A class of new implicit compact sixth-order approximations for Poisson equations and the estimates of normal derivatives in multi-dimensions

IF 1.4 Q2 MATHEMATICS, APPLIED
R.K. Mohanty , Niranjan
{"title":"A class of new implicit compact sixth-order approximations for Poisson equations and the estimates of normal derivatives in multi-dimensions","authors":"R.K. Mohanty ,&nbsp;Niranjan","doi":"10.1016/j.rinam.2024.100454","DOIUrl":null,"url":null,"abstract":"<div><p>In this piece of work, a family of compact implicit numerical algorithms for (<em>∂u/∂n</em>) of order of accuracy six are proposed on a 9- and 19-point compact cell for two- and three- dimensional Poisson equations <em>∆</em><sup>2</sup><em>u</em>=<em>f</em> which are quite often useful in mathematical physics and engineering, where <em>∆</em><sup>2</sup> is either two or three dimensional Laplacian operator. First, we propose a family of new numerical algorithms of order of accuracy six for the computation of the solution of 2D and 3D Poisson equations on 9- and 27-points compact stencil, respectively. Then with the aid of the numerical solution of <em>u</em>, we propose a new family of compact sixth order implicit numerical algorithms for the estimates of (<em>∂u/∂n</em>). The proposed algorithms are free from derivatives of the source functions, which makes our algorithms more efficient for computation. Suitable iteration techniques are used for computation to demonstrate the sixth order convergence of the proposed algorithms. Numerical results are tabulated, confirming the usefulness of the suggested numerical algorithms.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100454"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000244/pdfft?md5=777275bd087413d156989f36e77a860d&pid=1-s2.0-S2590037424000244-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this piece of work, a family of compact implicit numerical algorithms for (∂u/∂n) of order of accuracy six are proposed on a 9- and 19-point compact cell for two- and three- dimensional Poisson equations 2u=f which are quite often useful in mathematical physics and engineering, where 2 is either two or three dimensional Laplacian operator. First, we propose a family of new numerical algorithms of order of accuracy six for the computation of the solution of 2D and 3D Poisson equations on 9- and 27-points compact stencil, respectively. Then with the aid of the numerical solution of u, we propose a new family of compact sixth order implicit numerical algorithms for the estimates of (∂u/∂n). The proposed algorithms are free from derivatives of the source functions, which makes our algorithms more efficient for computation. Suitable iteration techniques are used for computation to demonstrate the sixth order convergence of the proposed algorithms. Numerical results are tabulated, confirming the usefulness of the suggested numerical algorithms.

一类新的泊松方程隐式紧凑六阶近似和多维度正态导数估计
在这项研究中,我们针对数学物理和工程学中常用的二维和三维泊松方程 ∆2u=f 提出了一系列精度为六阶的 (∂u/∂n) 紧凑型隐式数值算法,它们分别位于 9 点和 19 点紧凑型单元上,其中 ∆2 是二维或三维拉普拉斯算子。首先,我们提出了一系列精度为 6 级的新数值算法,分别用于计算 9 点和 27 点紧凑模板上二维和三维泊松方程的解。然后,借助 u 的数值解,我们提出了一系列新的紧凑型六阶隐式数值算法,用于估计 (∂u/∂n)。我们提出的算法不需要源函数的导数,因此计算效率更高。计算中使用了适当的迭代技术,以证明所提算法的六阶收敛性。计算结果以表格形式列出,证实了所建议的数值算法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信