Small Subgraphs with Large Average Degree

IF 1 2区 数学 Q1 MATHEMATICS
Oliver Janzer, Benny Sudakov, István Tomon
{"title":"Small Subgraphs with Large Average Degree","authors":"Oliver Janzer, Benny Sudakov, István Tomon","doi":"10.1007/s00493-024-00091-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number <span>\\(s&gt;2\\)</span>, we prove that every graph on <i>n</i> vertices with average degree <span>\\(d\\ge s\\)</span> contains a subgraph of average degree at least <i>s</i> on at most <span>\\(nd^{-\\frac{s}{s-2}}(\\log d)^{O_s(1)}\\)</span> vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with <i>n</i> vertices and average degree at least <span>\\(n^{1-\\frac{2}{s}+\\varepsilon }\\)</span> contains a subgraph of average degree at least <i>s</i> on <span>\\(O_{\\varepsilon ,s}(1)\\)</span> vertices, which is also optimal up to the constant hidden in the <i>O</i>(.) notation, and resolves a conjecture of Verstraëte.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00091-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number \(s>2\), we prove that every graph on n vertices with average degree \(d\ge s\) contains a subgraph of average degree at least s on at most \(nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}\) vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with n vertices and average degree at least \(n^{1-\frac{2}{s}+\varepsilon }\) contains a subgraph of average degree at least s on \(O_{\varepsilon ,s}(1)\) vertices, which is also optimal up to the constant hidden in the O(.) notation, and resolves a conjecture of Verstraëte.

Abstract Image

平均度大的小子图
在本文中,我们研究了在给定图中寻找小密集子图的基本问题。对于实数 \(s>2\),我们证明平均度为 \(d\ge s\) 的 n 个顶点上的每个图都包含一个平均度至少为 s 的子图,该子图位于最多 \(nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}\) 个顶点上。这在多对数因子以内都是最优的,并且解决了费格和瓦格纳的一个猜想。此外,我们还证明了每一个有 n 个顶点且平均度至少为 \(n^{1-\frac{2}{s}+\varepsilon }\) 的图都包含一个平均度至少为 s 的子图,该子图位于 \(O_{\varepsilon ,s}(1)\) 顶点上,这也是最优的,直到隐藏在 O(.) 符号中的常数为止,并解决了 Verstraëte 的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信