Deep Learning–Based Prediction Modeling of Major Adverse Cardiovascular Events After Liver Transplantation

Ahmed Abdelhameed PhD , Harpreet Bhangu MD , Jingna Feng MS , Fang Li PhD , Xinyue Hu MS , Parag Patel MD , Liu Yang MD , Cui Tao
{"title":"Deep Learning–Based Prediction Modeling of Major Adverse Cardiovascular Events After Liver Transplantation","authors":"Ahmed Abdelhameed PhD ,&nbsp;Harpreet Bhangu MD ,&nbsp;Jingna Feng MS ,&nbsp;Fang Li PhD ,&nbsp;Xinyue Hu MS ,&nbsp;Parag Patel MD ,&nbsp;Liu Yang MD ,&nbsp;Cui Tao","doi":"10.1016/j.mcpdig.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To validate deep learning models’ ability to predict post-transplantation major adverse cardiovascular events (MACE) in patients undergoing liver transplantation (LT).</p></div><div><h3>Patients and Methods</h3><p>We used data from Optum’s de-identified Clinformatics Data Mart Database to identify liver transplant recipients between January 2007 and March 2020. To predict post-transplantation MACE risk, we considered patients’ demographics characteristics, diagnoses, medications, and procedural data recorded back to 3 years before the LT procedure date (index date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to develop and test the deep learning model’s performance against other baseline machine learning models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model performance was evaluated on the remaining 20% using the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).</p></div><div><h3>Results</h3><p>Using different prediction intervals after the index date, the top-performing model was the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822-0.862) and AUC-PR of 0.578 (95% CI, 0.537-0.621) for a 30-day prediction interval after LT.</p></div><div><h3>Conclusion</h3><p>Using longitudinal claims data, deep learning models can efficiently predict MACE after LT, assisting clinicians in identifying high-risk candidates for further risk stratification or other management strategies to improve transplant outcomes based on important features identified by the model.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 221-230"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000221/pdfft?md5=93eb32520224a4e9423e1f9cc6e1d49b&pid=1-s2.0-S2949761224000221-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To validate deep learning models’ ability to predict post-transplantation major adverse cardiovascular events (MACE) in patients undergoing liver transplantation (LT).

Patients and Methods

We used data from Optum’s de-identified Clinformatics Data Mart Database to identify liver transplant recipients between January 2007 and March 2020. To predict post-transplantation MACE risk, we considered patients’ demographics characteristics, diagnoses, medications, and procedural data recorded back to 3 years before the LT procedure date (index date). MACE is predicted using the bidirectional gated recurrent units (BiGRU) deep learning model in different prediction interval lengths up to 5 years after the index date. In total, 18,304 liver transplant recipients (mean age, 57.4 years [SD, 12.76]; 7158 [39.1%] women) were used to develop and test the deep learning model’s performance against other baseline machine learning models. Models were optimized using 5-fold cross-validation on 80% of the cohort, and model performance was evaluated on the remaining 20% using the area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR).

Results

Using different prediction intervals after the index date, the top-performing model was the deep learning model, BiGRU, and achieved an AUC-ROC of 0.841 (95% CI, 0.822-0.862) and AUC-PR of 0.578 (95% CI, 0.537-0.621) for a 30-day prediction interval after LT.

Conclusion

Using longitudinal claims data, deep learning models can efficiently predict MACE after LT, assisting clinicians in identifying high-risk candidates for further risk stratification or other management strategies to improve transplant outcomes based on important features identified by the model.

Abstract Image

基于深度学习的肝移植后主要不良心血管事件预测模型
目标验证深度学习模型预测接受肝移植(LT)患者移植后主要不良心血管事件(MACE)的能力。患者和方法我们使用 Optum 的去标识化临床信息学数据集市数据库中的数据来识别 2007 年 1 月至 2020 年 3 月期间的肝移植受者。为了预测移植后 MACE 风险,我们考虑了患者的人口统计学特征、诊断、用药以及 LT 手术日期(索引日期)前 3 年的手术数据。我们使用双向门控递归单元(BiGRU)深度学习模型,按照不同的预测间隔长度对MACE进行预测,最长预测间隔时间为指数日期后5年。共有 18304 名肝移植受者(平均年龄 57.4 岁 [SD, 12.76];女性 7158 [39.1%])被用于开发深度学习模型,并与其他基线机器学习模型对比测试其性能。在 80% 的队列中使用 5 倍交叉验证对模型进行了优化,并在剩余 20% 的队列中使用接收器操作特征曲线下面积(AUC-ROC)和精确度-召回曲线下面积(AUC-PR)对模型性能进行了评估。841(95% CI,0.822-0.862),LT 后 30 天预测间隔的 AUC-PR 为 0.578(95% CI,0.537-0.621)。结论利用纵向索赔数据,深度学习模型可以有效预测 LT 后的 MACE,协助临床医生根据模型识别的重要特征识别高风险候选者,以进一步进行风险分层或采取其他管理策略,从而改善移植预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信