Kai Liu, Yi Zheng, Daxun Wang, Yan Cai, Yuanyuan Shi, Chongqin Xi, Dongbo Tu
{"title":"A Framework for Detecting Both Main Effect and Interactive DIF in Multidimensional Forced-Choice Assessments","authors":"Kai Liu, Yi Zheng, Daxun Wang, Yan Cai, Yuanyuan Shi, Chongqin Xi, Dongbo Tu","doi":"10.1177/10944281241244760","DOIUrl":null,"url":null,"abstract":"In recent decades, multidimensional forced-choice (MFC) tests have gained widespread popularity in organizational settings due to their effectiveness in reducing response biases. Detecting differential item functioning (DIF) is crucial in developing MFC tests, as it relates to test fairness and validity. However, existing methods appear insufficient for detecting DIF induced by the interaction between multiple covariates. Furthermore, for multi-category, ordered or continuous covariates, existing approaches often dichotomize them using a-priori cutoffs, commonly using the median of the covariates. This may lead to information loss and reduced power in detecting MFC DIF. To address these limitations, we propose a method to identify both main effect DIF and interactive DIF. This method can automatically search for the optimal cutoffs for ordered or continuous covariates without pre-defined cutoffs. We introduce the rationale behind the proposed method and evaluate its performance through three Monte Carlo simulation studies. Results demonstrate that the proposed method effectively identifies various DIF forms in MFC tests, thereby increasing detection power. Finally, we provide an empirical application to illustrate the practical applicability of the proposed method.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"9 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281241244760","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, multidimensional forced-choice (MFC) tests have gained widespread popularity in organizational settings due to their effectiveness in reducing response biases. Detecting differential item functioning (DIF) is crucial in developing MFC tests, as it relates to test fairness and validity. However, existing methods appear insufficient for detecting DIF induced by the interaction between multiple covariates. Furthermore, for multi-category, ordered or continuous covariates, existing approaches often dichotomize them using a-priori cutoffs, commonly using the median of the covariates. This may lead to information loss and reduced power in detecting MFC DIF. To address these limitations, we propose a method to identify both main effect DIF and interactive DIF. This method can automatically search for the optimal cutoffs for ordered or continuous covariates without pre-defined cutoffs. We introduce the rationale behind the proposed method and evaluate its performance through three Monte Carlo simulation studies. Results demonstrate that the proposed method effectively identifies various DIF forms in MFC tests, thereby increasing detection power. Finally, we provide an empirical application to illustrate the practical applicability of the proposed method.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.