Catriona M. Steele, Qian Liu, Haakon MacCallum, Melanie Peladeau-Pigeon, Jianshe Chen, Ben Hanson, Jan Vanderwegen, Peter Lam
{"title":"Validation of the IDDSI funnel for liquid flow testing","authors":"Catriona M. Steele, Qian Liu, Haakon MacCallum, Melanie Peladeau-Pigeon, Jianshe Chen, Ben Hanson, Jan Vanderwegen, Peter Lam","doi":"10.1111/jtxs.12823","DOIUrl":null,"url":null,"abstract":"<p>In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12823","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12823","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing