Andrea Apicella, Pasquale Arpaia, Simone Barbato, Giovanni D’Errico, Giovanna Mastrati, Nicola Moccaldi, Ersilia Vallefuoco, Selina Christin Wriessnegger
{"title":"Domain Adaptation for Fear of Heights Classification in a VR Environment Based on EEG and ECG","authors":"Andrea Apicella, Pasquale Arpaia, Simone Barbato, Giovanni D’Errico, Giovanna Mastrati, Nicola Moccaldi, Ersilia Vallefuoco, Selina Christin Wriessnegger","doi":"10.1007/s10796-024-10484-z","DOIUrl":null,"url":null,"abstract":"<p>Three levels of fear of heights were detected in subjects with different severities of acrophobia, based on the electroencephalographic (EEG) and electrocardiographic (ECG) signals. The study aims to demonstrate the feasibility of a data-fusion-based method for real-time assessment of the fear of heights intensity to integrate into adaptive Virtual Reality Exposure Therapy for acrophobia. The generalization performance of classification tasks on fear states is improved by exploiting both trait-based clustering and Domain Adaptation methods. Participants were gradually exposed to increasing height levels through a Virtual Reality (VR) scenario representing a canyon. The initial severity of fear of heights, the level of distress at each height, and the anxiety level before and after the exposure were assessed through the Acrophobia Questionnaire, the Subjective Unit of Distress, and the State and Trait Anxiety Inventory, respectively. The Simulator Sickness Questionnaire was administered to exclude possible motion sickness interference in the experiment. The EEG and ECG signals were acquired through a 32-channel headset and 1 Lead ECG derivation during the exposure to the eliciting VR scenario. Four classifiers (i.e. Support Vector Machines, Deep Neural Networks, Random Forests, and <i>k</i>-Nearest Neighbors) were adopted in the experimental environment. Preliminary tests were performed in a within-subject experiment, achieving the best classification accuracy of <span>\\(87.1 \\% \\pm 7.8 \\%\\)</span> with a Deep Neural Network. As the cross-subject approach is concerned, three strategies, namely Domain Adaptation (DA), data fusion (combining EEG with ECG), and participant clustering (based on the acrophobia severity), were evaluated. DA resulted in the most effective strategies by determining an improvement of more than 20 % in classification accuracy. Random Forest performed the best classification accuracy for the severe acrophobia cluster with a mean of <span>\\(63.6 \\%\\)</span> and a standard deviation of <span>\\( 13.4 \\%\\)</span> over three classes by exploiting Stratified Normalization.</p>","PeriodicalId":13610,"journal":{"name":"Information Systems Frontiers","volume":"18 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Frontiers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10796-024-10484-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Three levels of fear of heights were detected in subjects with different severities of acrophobia, based on the electroencephalographic (EEG) and electrocardiographic (ECG) signals. The study aims to demonstrate the feasibility of a data-fusion-based method for real-time assessment of the fear of heights intensity to integrate into adaptive Virtual Reality Exposure Therapy for acrophobia. The generalization performance of classification tasks on fear states is improved by exploiting both trait-based clustering and Domain Adaptation methods. Participants were gradually exposed to increasing height levels through a Virtual Reality (VR) scenario representing a canyon. The initial severity of fear of heights, the level of distress at each height, and the anxiety level before and after the exposure were assessed through the Acrophobia Questionnaire, the Subjective Unit of Distress, and the State and Trait Anxiety Inventory, respectively. The Simulator Sickness Questionnaire was administered to exclude possible motion sickness interference in the experiment. The EEG and ECG signals were acquired through a 32-channel headset and 1 Lead ECG derivation during the exposure to the eliciting VR scenario. Four classifiers (i.e. Support Vector Machines, Deep Neural Networks, Random Forests, and k-Nearest Neighbors) were adopted in the experimental environment. Preliminary tests were performed in a within-subject experiment, achieving the best classification accuracy of \(87.1 \% \pm 7.8 \%\) with a Deep Neural Network. As the cross-subject approach is concerned, three strategies, namely Domain Adaptation (DA), data fusion (combining EEG with ECG), and participant clustering (based on the acrophobia severity), were evaluated. DA resulted in the most effective strategies by determining an improvement of more than 20 % in classification accuracy. Random Forest performed the best classification accuracy for the severe acrophobia cluster with a mean of \(63.6 \%\) and a standard deviation of \( 13.4 \%\) over three classes by exploiting Stratified Normalization.
期刊介绍:
The interdisciplinary interfaces of Information Systems (IS) are fast emerging as defining areas of research and development in IS. These developments are largely due to the transformation of Information Technology (IT) towards networked worlds and its effects on global communications and economies. While these developments are shaping the way information is used in all forms of human enterprise, they are also setting the tone and pace of information systems of the future. The major advances in IT such as client/server systems, the Internet and the desktop/multimedia computing revolution, for example, have led to numerous important vistas of research and development with considerable practical impact and academic significance. While the industry seeks to develop high performance IS/IT solutions to a variety of contemporary information support needs, academia looks to extend the reach of IS technology into new application domains. Information Systems Frontiers (ISF) aims to provide a common forum of dissemination of frontline industrial developments of substantial academic value and pioneering academic research of significant practical impact.