{"title":"Development of size and shape dependent model for various thermodynamic properties of nanomaterials","authors":"Soni Sharma , Jagat Pal Singh","doi":"10.1016/j.physo.2024.100215","DOIUrl":null,"url":null,"abstract":"<div><p>The models developed in this work are used to study various thermodynamic properties of nanomaterials. A better agreement between theory and experiment indicates the validity of the proposed model. Since the model is simple and easy to use, we extend the theory to understand, how the thermodynamic properties of different nanomaterials depend on size and shape. The results were compared with previous theoretical work and experimental data. We have concluded that the model predicts a better agreement with previous theoretical work and experimental studies. Current research produces thermodynamic models for the Debye frequency, melting entropy, melting enthalpy, and Einstein temperature. To the best of our knowledge, such models are not yet available in the literature that works well.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"19 ","pages":"Article 100215"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032624000139/pdfft?md5=b5fd0063d58cb079a3eacaaca82a8dc7&pid=1-s2.0-S2666032624000139-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The models developed in this work are used to study various thermodynamic properties of nanomaterials. A better agreement between theory and experiment indicates the validity of the proposed model. Since the model is simple and easy to use, we extend the theory to understand, how the thermodynamic properties of different nanomaterials depend on size and shape. The results were compared with previous theoretical work and experimental data. We have concluded that the model predicts a better agreement with previous theoretical work and experimental studies. Current research produces thermodynamic models for the Debye frequency, melting entropy, melting enthalpy, and Einstein temperature. To the best of our knowledge, such models are not yet available in the literature that works well.