Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Manjula , E. Thilakraj , P. Sawangtong , K. Kaliraj
{"title":"Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method","authors":"M. Manjula ,&nbsp;E. Thilakraj ,&nbsp;P. Sawangtong ,&nbsp;K. Kaliraj","doi":"10.1016/j.rinam.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100452"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000220/pdfft?md5=06f3a022546581dab00d18fcb1040308&pid=1-s2.0-S2590037424000220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.

通过 Faedo-Galerkin 方法分析带有偏离参数的非线性微分方程
本文主要研究具有非局部条件的 Sobolev 型脉冲分微分方程(FDE)。通过解析半群和定点法确定了近似的存在性和唯一性。通过封闭线性算子的分数幂思想证明了收敛近似性。利用近似程序,我们得出了一种新方法。通过一个例子来阐明我们的主要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信