Haochen Mu , Fengyang He , Lei Yuan , Philip Commins , Donghong Ding , Zengxi Pan
{"title":"A digital shadow approach for enhancing process monitoring in wire arc additive manufacturing using sensor fusion","authors":"Haochen Mu , Fengyang He , Lei Yuan , Philip Commins , Donghong Ding , Zengxi Pan","doi":"10.1016/j.jii.2024.100609","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of Industry 4.0 and smart manufacturing, improving production automation, intelligence, and digitalization has become a research trend in the Wire Arc Additive Manufacturing (WAAM) field. This study introduces a digital shadow that aims to improve the adaptiveness and dimensionality of monitoring systems in WAAM. Three sensors are used in the digital shadow: a welding electric signal sensor, a camera, and a laser profilometer to collect welding current and voltage data, image data, and point cloud data. The collected multi-scaled data are time and spatially synchronized by sampling multiple points along the welding path. Three ML algorithms are used for decision-making: Multi-layer Perceptron (MLP) classifier and YOLOv5 are used for time and spatial-scale detection, respectively, and a Variational Autoencoder (VAE) is used for the decision-level fusion. The system performance is then tested to detect defects and geometric errors in practical experiments and the results show that the overall F1 score is 0.791, including detecting, classifying, and analyzing the cause of defects. Additionally, the total predicting time is within 0.5 s, which is suitable for an in-process monitoring system.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"40 ","pages":"Article 100609"},"PeriodicalIF":10.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24000530/pdfft?md5=afd94347db3fd70aee553ff3a272ca89&pid=1-s2.0-S2452414X24000530-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24000530","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of Industry 4.0 and smart manufacturing, improving production automation, intelligence, and digitalization has become a research trend in the Wire Arc Additive Manufacturing (WAAM) field. This study introduces a digital shadow that aims to improve the adaptiveness and dimensionality of monitoring systems in WAAM. Three sensors are used in the digital shadow: a welding electric signal sensor, a camera, and a laser profilometer to collect welding current and voltage data, image data, and point cloud data. The collected multi-scaled data are time and spatially synchronized by sampling multiple points along the welding path. Three ML algorithms are used for decision-making: Multi-layer Perceptron (MLP) classifier and YOLOv5 are used for time and spatial-scale detection, respectively, and a Variational Autoencoder (VAE) is used for the decision-level fusion. The system performance is then tested to detect defects and geometric errors in practical experiments and the results show that the overall F1 score is 0.791, including detecting, classifying, and analyzing the cause of defects. Additionally, the total predicting time is within 0.5 s, which is suitable for an in-process monitoring system.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.