Charge transfer and spin-valley locking in 4Hb-TaS2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Avior Almoalem, Roni Gofman, Yuval Nitzav, Ilay Mangel, Irena Feldman, Jahyun Koo, Federico Mazzola, Jun Fujii, Ivana Vobornik, J. S´anchez-Barriga, Oliver J. Clark, Nicholas Clark Plumb, Ming Shi, Binghai Yan, Amit Kanigel
{"title":"Charge transfer and spin-valley locking in 4Hb-TaS2","authors":"Avior Almoalem, Roni Gofman, Yuval Nitzav, Ilay Mangel, Irena Feldman, Jahyun Koo, Federico Mazzola, Jun Fujii, Ivana Vobornik, J. S´anchez-Barriga, Oliver J. Clark, Nicholas Clark Plumb, Ming Shi, Binghai Yan, Amit Kanigel","doi":"10.1038/s41535-024-00646-2","DOIUrl":null,"url":null,"abstract":"<p>4Hb-TaS<sub>2</sub> is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS<sub>2</sub> and 1T-TaS<sub>2</sub>. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS<sub>2</sub> fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS<sub>2</sub> compared to the coupling in 2H-TaS<sub>2</sub> that results in a pronounced spin-valley locking within 4Hb-TaS<sub>2</sub>.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"47 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00646-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

4Hb-TaS2 is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS2 and 1T-TaS2. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS2 fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS2 compared to the coupling in 2H-TaS2 that results in a pronounced spin-valley locking within 4Hb-TaS2.

Abstract Image

4Hb-TaS2 中的电荷转移和自旋谷锁定
4Hb-TaS2 是一种超导体,具有时间反转对称性破缺、隐磁记忆和拓扑边缘模式等独特特性。它是一种天然存在的异质结构,由 1H-TaS2 和 1T-TaS2 的交替层组成。前者是一种著名的超导体,而后者则是一种相关绝缘体,可能具有非三磁性基态。在这项研究中,我们使用角度分辨光发射光谱来研究这种非常规超导体的正常态电子结构。我们的研究结果表明,4Hb-TaS2 的能带结构与其组成材料的能带结构有着本质区别。具体来说,我们观察到从 1T 层到 1H 层的显著电荷转移,这促使 1T 层远离半填充。此外,我们还发现与 2H-TaS2 的耦合相比,4Hb-TaS2 的层间耦合大大降低,从而导致 4Hb-TaS2 内出现明显的自旋谷锁定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信