On the rate of convergence of Yosida approximation for the nonlocal Cahn–Hilliard equation

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Piotr Gwiazda, Jakub Skrzeczkowski, Lara Trussardi
{"title":"On the rate of convergence of Yosida approximation for the nonlocal Cahn–Hilliard equation","authors":"Piotr Gwiazda, Jakub Skrzeczkowski, Lara Trussardi","doi":"10.1093/imanum/drae006","DOIUrl":null,"url":null,"abstract":"It is well-known that one can construct solutions to the nonlocal Cahn–Hilliard equation with singular potentials via Yosida approximation with parameter $\\lambda \\to 0$. The usual method is based on compactness arguments and does not provide any rate of convergence. Here, we fill the gap and we obtain an explicit convergence rate $\\sqrt{\\lambda }$. The proof is based on the theory of maximal monotone operators and an observation that the nonlocal operator is of Hilbert–Schmidt type. Our estimate can provide convergence result for the Galerkin methods where the parameter $\\lambda $ could be linked to the discretization parameters, yielding appropriate error estimates.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"79 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that one can construct solutions to the nonlocal Cahn–Hilliard equation with singular potentials via Yosida approximation with parameter $\lambda \to 0$. The usual method is based on compactness arguments and does not provide any rate of convergence. Here, we fill the gap and we obtain an explicit convergence rate $\sqrt{\lambda }$. The proof is based on the theory of maximal monotone operators and an observation that the nonlocal operator is of Hilbert–Schmidt type. Our estimate can provide convergence result for the Galerkin methods where the parameter $\lambda $ could be linked to the discretization parameters, yielding appropriate error estimates.
论非局部卡恩-希利亚德方程的约西达近似的收敛速率
众所周知,我们可以通过参数为 $\lambda \to 0$ 的约西达近似法来构建具有奇异势的非局部卡恩-希利亚德方程的解。通常的方法基于紧凑性论证,并不提供任何收敛率。在此,我们填补了这一空白,并获得了明确的收敛率 $\sqrt{\lambda }$。证明基于最大单调算子理论和非局部算子属于希尔伯特-施密特类型的观察。我们的估计可以为 Galerkin 方法提供收敛结果,其中参数 $\lambda $ 可以与离散化参数相关联,从而产生适当的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信