Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lihong Zhang, Qi Liu, Bashir Ahmad, Guotao Wang
{"title":"Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians","authors":"Lihong Zhang, Qi Liu, Bashir Ahmad, Guotao Wang","doi":"10.1007/s13540-024-00277-1","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the following coupled <i>k</i>-Hessian system with different order fractional Laplacian operators: </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\\varDelta )^{\\alpha /2}w(x)=f(z(x)),\\\\ {S_k}({D^2}z(x))-B(x)(-\\varDelta )^{\\beta /2}z(x)=g(w(x)). \\end{array}\\right. } \\end{aligned}$$</span><p>Firstly, we discuss <i>decay at infinity principle</i> and <i>narrow region principle</i> for the <i>k</i>-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled <i>k</i>-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled <i>k</i>-Hessian system involving different order fractional Laplacian operators.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00277-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the following coupled k-Hessian system with different order fractional Laplacian operators:

$$\begin{aligned} {\left\{ \begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\varDelta )^{\alpha /2}w(x)=f(z(x)),\\ {S_k}({D^2}z(x))-B(x)(-\varDelta )^{\beta /2}z(x)=g(w(x)). \end{array}\right. } \end{aligned}$$

Firstly, we discuss decay at infinity principle and narrow region principle for the k-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled k-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled k-Hessian system involving different order fractional Laplacian operators.

涉及不同分数拉普拉斯的耦合 k-Hessian 系统的非负解
本文研究了以下具有不同阶分数拉普拉斯算子的耦合 k-Hessian 系统:$$\begin{aligned} {\left\{ \begin{array}{ll}{S_k}({D^2}w(x))-A(x)(-\varDelta )^{\alpha/2}w(x)=f(z(x)),\{S_k}({D^2}z(x))-B(x)(-\varDelta )^{\beta/2}z(x)=g(w(x))。\end{array}\right.}\end{aligned}$$首先,我们讨论了涉及分数阶拉普拉斯算子的 k-Hessian 系统的无穷衰减原理和窄区域原理。然后,利用移动平面的直接方法,分别证明了耦合 k-Hessian 系统非负解在单位球和整个空间的径向对称性和单调性。我们相信,本研究将有助于深入理解涉及不同阶分数拉普拉斯算子的耦合 k-Hessian 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信