A rank estimation method for third-order tensor completion in the tensor-train format

Charlotte Vermeylen , Guillaume Olikier , Pierre-Antoine Absil , Marc Van Barel
{"title":"A rank estimation method for third-order tensor completion in the tensor-train format","authors":"Charlotte Vermeylen ,&nbsp;Guillaume Olikier ,&nbsp;Pierre-Antoine Absil ,&nbsp;Marc Van Barel","doi":"10.1016/j.sctalk.2024.100342","DOIUrl":null,"url":null,"abstract":"<div><p>A numerical method to obtain an adequate value for the upper bound on the rank for the tensor completion problem on the variety of third-order tensors of bounded tensor-train rank is proposed. The method is inspired by the parametrization of the tangent cone derived by Kutschan (2018). The adequacy of the upper bound for a related low-rank tensor approximation problem is shown and an estimated rank is defined to extend the result to the low-rank tensor completion problem. Some experiments on synthetic data are given to illustrate the approach and show that the method is robust, e.g., to noise on the data.</p></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"10 ","pages":"Article 100342"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772569324000501/pdfft?md5=a24c1e6beae2d50595c0efe009756208&pid=1-s2.0-S2772569324000501-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical method to obtain an adequate value for the upper bound on the rank for the tensor completion problem on the variety of third-order tensors of bounded tensor-train rank is proposed. The method is inspired by the parametrization of the tangent cone derived by Kutschan (2018). The adequacy of the upper bound for a related low-rank tensor approximation problem is shown and an estimated rank is defined to extend the result to the low-rank tensor completion problem. Some experiments on synthetic data are given to illustrate the approach and show that the method is robust, e.g., to noise on the data.

以张量-列车格式完成三阶张量的秩估计方法
本文提出了一种数值方法,用于获得张量秩有界的三阶张量种类上的张量补全问题的秩上界的适当值。该方法受到 Kutschan (2018) 所推导的切锥参数化的启发。该方法证明了相关低阶张量近似问题上界的充分性,并定义了估计秩,从而将结果扩展到低阶张量完成问题。本文给出了一些合成数据实验,以说明该方法,并表明该方法具有鲁棒性,例如对数据噪声的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信