SOME RESULTS ON BOX DIMENSION ESTIMATION OF FRACTAL CONTINUOUS FUNCTIONS

Fractals Pub Date : 2024-04-09 DOI:10.1142/s0218348x24500506
HUAI YANG, LULU REN, QIAN ZHENG
{"title":"SOME RESULTS ON BOX DIMENSION ESTIMATION OF FRACTAL CONTINUOUS FUNCTIONS","authors":"HUAI YANG, LULU REN, QIAN ZHENG","doi":"10.1142/s0218348x24500506","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we explore upper box dimension of continuous functions on <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo></math></span><span></span> and their Riemann–Liouville fractional integral. Firstly, by comparing function limits, we prove that the upper box dimension of the Riemann–Liouville fractional order integral image of a continuous function will not exceed <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mo stretchy=\"false\">−</mo><mi>υ</mi></math></span><span></span>, the result similar to [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous functions, <i>Acta Math. Appl. Sin. E</i><b>32</b> (2016) 1494–1508]. Secondly, we prove that upper box dimension of multiple algebraic sums of continuous functions does not exceed the largest box dimension among them, backing up our conclusion with an appropriate example. Finally, we draw the same conclusions for the product of multiple continuous functions.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore upper box dimension of continuous functions on [0,1] and their Riemann–Liouville fractional integral. Firstly, by comparing function limits, we prove that the upper box dimension of the Riemann–Liouville fractional order integral image of a continuous function will not exceed 2υ, the result similar to [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous functions, Acta Math. Appl. Sin. E32 (2016) 1494–1508]. Secondly, we prove that upper box dimension of multiple algebraic sums of continuous functions does not exceed the largest box dimension among them, backing up our conclusion with an appropriate example. Finally, we draw the same conclusions for the product of multiple continuous functions.

分形连续函数盒维估计的若干结果
本文探讨了[0,1]上连续函数的上盒维及其黎曼-黎奥维尔分阶积分。首先,通过比较函数极限,我们证明了连续函数的黎曼-黎奥维尔分数阶积分图像的上盒维不会超过 2-υ,这一结果与 [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral image of a continuous function] 类似。S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous function, Acta Math.Appl.E32 (2016) 1494-1508].其次,我们证明连续函数的多个代数和的上盒维不超过其中最大的盒维,并用一个适当的例子来支持我们的结论。最后,我们对多个连续函数的乘积得出了同样的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信