Sum-of-Squares Relaxations for Information Theory and Variational Inference

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Sum-of-Squares Relaxations for Information Theory and Variational Inference","authors":"","doi":"10.1007/s10208-024-09651-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider extensions of the Shannon relative entropy, referred to as <em>f</em>-divergences. Three classical related computational problems are typically associated with these divergences: (a) estimation from moments, (b) computing normalizing integrals, and (c) variational inference in probabilistic models. These problems are related to one another through convex duality, and for all of them, there are many applications throughout data science, and we aim for computationally tractable approximation algorithms that preserve properties of the original problem such as potential convexity or monotonicity. In order to achieve this, we derive a sequence of convex relaxations for computing these divergences from non-centered covariance matrices associated with a given feature vector: starting from the typically non-tractable optimal lower-bound, we consider an additional relaxation based on “sums-of-squares”, which is is now computable in polynomial time as a semidefinite program. We also provide computationally more efficient relaxations based on spectral information divergences from quantum information theory. For all of the tasks above, beyond proposing new relaxations, we derive tractable convex optimization algorithms, and we present illustrations on multivariate trigonometric polynomials and functions on the Boolean hypercube.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09651-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider extensions of the Shannon relative entropy, referred to as f-divergences. Three classical related computational problems are typically associated with these divergences: (a) estimation from moments, (b) computing normalizing integrals, and (c) variational inference in probabilistic models. These problems are related to one another through convex duality, and for all of them, there are many applications throughout data science, and we aim for computationally tractable approximation algorithms that preserve properties of the original problem such as potential convexity or monotonicity. In order to achieve this, we derive a sequence of convex relaxations for computing these divergences from non-centered covariance matrices associated with a given feature vector: starting from the typically non-tractable optimal lower-bound, we consider an additional relaxation based on “sums-of-squares”, which is is now computable in polynomial time as a semidefinite program. We also provide computationally more efficient relaxations based on spectral information divergences from quantum information theory. For all of the tasks above, beyond proposing new relaxations, we derive tractable convex optimization algorithms, and we present illustrations on multivariate trigonometric polynomials and functions on the Boolean hypercube.

信息论和变量推理的平方和松弛
摘要 我们考虑香农相对熵的扩展,称为 f-发散。与这些发散相关的计算问题通常有三个:(a) 矩估计,(b) 计算归一化积分,以及 (c) 概率模型中的变分推理。这些问题通过凸对偶性相互关联,所有这些问题在整个数据科学中都有很多应用,我们的目标是找到计算上可行的近似算法,并保留原始问题的特性,如潜在凸性或单调性。为了实现这一目标,我们推导出了一系列凸松弛算法,用于计算与给定特征向量相关的非中心协方差矩阵的这些发散:从典型的非可计算性最优下限开始,我们考虑了基于 "平方和 "的附加松弛算法,现在它可以作为一个半定式程序在多项式时间内计算。我们还根据量子信息论中的谱信息发散提供了计算效率更高的松弛方法。对于上述所有任务,除了提出新的松弛方法外,我们还推导出了可行的凸优化算法,并对多元三角多项式和布尔超立方上的函数进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信