Global boundedness and asymptotic behavior of the chemotaxis system for alopecia areata with singular sensitivity

IF 1.4 Q2 MATHEMATICS, APPLIED
Peng Gao , Lu Xu
{"title":"Global boundedness and asymptotic behavior of the chemotaxis system for alopecia areata with singular sensitivity","authors":"Peng Gao ,&nbsp;Lu Xu","doi":"10.1016/j.rinam.2024.100450","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a three-component chemotaxis system for alopecia areata with singular sensitivity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mi>u</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mfenced><mrow><mfrac><mrow><mi>v</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>+</mo><mi>r</mi><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>−</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under the homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameters <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> <span><math><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span> and <span><math><mi>r</mi></math></span> are positive. It is showed that if <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><msqrt><mrow><mn>5</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, this system admits a globally bounded classical solution. Furthermore, under the particular conditions of <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>3</mn><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>r</mi><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, the global bounded solution converges to the steady state <span><math><mrow><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>4</mn></mrow><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100450"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000207/pdfft?md5=2ce9c6cd1fc48d777a643ef5b1e29b62&pid=1-s2.0-S2590037424000207-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with a three-component chemotaxis system for alopecia areata with singular sensitivity ut=Δuχ1uww+wμ1u2,xΩ,t>0,vt=Δvχ2vww+w+ruvμ2v2,xΩ,t>0,wt=Δw+u+vw,xΩ,t>0,uν=vν=wν=0,xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),xΩunder the homogeneous Neumann boundary conditions in a smoothly bounded domain ΩR2, where the parameters χi, μi (i=1,2) and r are positive. It is showed that if χ1,χ2<52, this system admits a globally bounded classical solution. Furthermore, under the particular conditions of μ1<μ2<3μ1 and r=μ2μ1, the global bounded solution converges to the steady state (2μ1,2μ1,4μ1) as t.

具有奇异敏感性的脱发症趋化系统的全局有界性和渐近行为
本文研究的是一种用于治疗斑秃的三组份趋化系统,其奇异敏感度为 ut=Δu-χ1∇⋅uw∇w+w-μ1u2,x∈Ω,t>;0,vt=Δv-χ2∇⋅vw∇w+w+ruv-μ2v2,x∈Ω,t>0,wt=Δw+u+v-w,x∈Ω,t>;0,∂u∂ν=∂v∂ν=∂w∂ν=0,x∈∂Ω,t>;0,u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),x∈Ω在平滑有界域Ω⊂R2 中的均相 Neumann 边界条件下,其中参数 χi、μi(i=1,2)和 r 均为正值。研究表明,如果χ1,χ2<52,这个系统会有一个全局有界的经典解。此外,在μ1<μ2<3μ1和r=μ2-μ1的特定条件下,随着t→∞,全局有界解收敛到稳态(2μ1,2μ1,4μ1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信