Multi-Source Collaborative Gradient Discrepancy Minimization for Federated Domain Generalization

Yikang Wei, Yahong Han
{"title":"Multi-Source Collaborative Gradient Discrepancy Minimization for Federated Domain Generalization","authors":"Yikang Wei, Yahong Han","doi":"10.48550/arXiv.2401.10272","DOIUrl":null,"url":null,"abstract":"Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain. Due to privacy concerns, the data from different source domains are kept isolated, which poses challenges in bridging the domain gap. To address this issue, we propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization. Specifically, we propose intra-domain gradient matching between the original images and augmented images to avoid overfitting the domain-specific information within isolated domains. Additionally, we propose inter-domain gradient matching with the collaboration of other domains, which can further reduce the domain shift across decentralized domains. Combining intra-domain and inter-domain gradient matching, our method enables the learned model to generalize well on unseen domains. Furthermore, our method can be extended to the federated domain adaptation task by fine-tuning the target model on the pseudo-labeled target domain. The extensive experiments on federated domain generalization and adaptation indicate that our method outperforms the state-of-the-art methods significantly.","PeriodicalId":518480,"journal":{"name":"AAAI Conference on Artificial Intelligence","volume":"26 2","pages":"15805-15813"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.10272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain. Due to privacy concerns, the data from different source domains are kept isolated, which poses challenges in bridging the domain gap. To address this issue, we propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization. Specifically, we propose intra-domain gradient matching between the original images and augmented images to avoid overfitting the domain-specific information within isolated domains. Additionally, we propose inter-domain gradient matching with the collaboration of other domains, which can further reduce the domain shift across decentralized domains. Combining intra-domain and inter-domain gradient matching, our method enables the learned model to generalize well on unseen domains. Furthermore, our method can be extended to the federated domain adaptation task by fine-tuning the target model on the pseudo-labeled target domain. The extensive experiments on federated domain generalization and adaptation indicate that our method outperforms the state-of-the-art methods significantly.
针对联合领域泛化的多源协作梯度差异最小化技术
联合领域泛化旨在从多个分散的源领域学习与领域无关的模型,然后部署到未见过的目标领域。出于对隐私的考虑,来自不同源域的数据被隔离开来,这给弥合域差距带来了挑战。为了解决这个问题,我们提出了一种用于联合域泛化的多源协作梯度差异最小化(MCGDM)方法。具体来说,我们建议在原始图像和增强图像之间进行域内梯度匹配,以避免在孤立域内过度拟合特定域信息。此外,我们还提出了与其他域协作的域间梯度匹配,这可以进一步减少分散域间的域偏移。结合域内梯度匹配和域间梯度匹配,我们的方法能使学习到的模型在未见过的域上具有良好的泛化能力。此外,通过在伪标签目标域上微调目标模型,我们的方法还可以扩展到联合域适应任务。对联合域泛化和适应的大量实验表明,我们的方法明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信