Latency Improvement Strategy for Temporally Stable Sequential 3DMM-based Face Expression Tracking

Tri Tung Nguyen Nguyen, D. Tran, Joo-Ho Lee
{"title":"Latency Improvement Strategy for Temporally Stable Sequential 3DMM-based Face Expression Tracking","authors":"Tri Tung Nguyen Nguyen, D. Tran, Joo-Ho Lee","doi":"10.1109/SII58957.2024.10417546","DOIUrl":null,"url":null,"abstract":"2D image-based face tracking is a core feature for multiple AR/VR applications. The latest advancements in self-supervised 3DMM face reconstruction maintained high-accuracy analysis-by-synthesis tracking but were not designed for online inference settings with low latency performance. Recently, state-of-the-art models such as MICA [1] has demonstrated significant improvement in term of accuracy for the offline face construction task but the design is ill-suited for practical use cases due to their long processing time on low and middle-end hardware. The original workflow includes two analysis-by-synthesis stages: face shape reconstruction and face tracking. The shape reconstruction aims to regress a neutral 3DMM model from the input. Then the tracking process learns relevant parameters for expressions, eyes, mouth, etc. for a differentiable render to reconstruct the original photographic input. This study aims to propose a design for an interface to apply offline 3DMM face tracking into an online inference pipeline for facial analysis-based applications.","PeriodicalId":518021,"journal":{"name":"2024 IEEE/SICE International Symposium on System Integration (SII)","volume":"19 1","pages":"327-332"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SII58957.2024.10417546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

2D image-based face tracking is a core feature for multiple AR/VR applications. The latest advancements in self-supervised 3DMM face reconstruction maintained high-accuracy analysis-by-synthesis tracking but were not designed for online inference settings with low latency performance. Recently, state-of-the-art models such as MICA [1] has demonstrated significant improvement in term of accuracy for the offline face construction task but the design is ill-suited for practical use cases due to their long processing time on low and middle-end hardware. The original workflow includes two analysis-by-synthesis stages: face shape reconstruction and face tracking. The shape reconstruction aims to regress a neutral 3DMM model from the input. Then the tracking process learns relevant parameters for expressions, eyes, mouth, etc. for a differentiable render to reconstruct the original photographic input. This study aims to propose a design for an interface to apply offline 3DMM face tracking into an online inference pipeline for facial analysis-based applications.
基于时序稳定 3DMM 的人脸表情跟踪延迟改进策略
基于二维图像的人脸跟踪是多种 AR/VR 应用的核心功能。自监督 3DMM 人脸重建的最新进展保持了高精度的合成分析跟踪,但并不是为低延迟性能的在线推理设置而设计的。最近,最先进的模型(如 MICA [1])在离线人脸构建任务的准确性方面有了显著提高,但由于其在中低端硬件上的处理时间较长,这种设计并不适合实际应用案例。最初的工作流程包括两个分析合成阶段:人脸形状重建和人脸跟踪。形状重建的目的是从输入中回归一个中性的 3DMM 模型。然后,跟踪过程学习表情、眼睛、嘴巴等的相关参数,进行可微分渲染,以重建原始照片输入。本研究旨在提出一种界面设计,以便将离线 3DMM 人脸跟踪应用到基于面部分析的在线推理管道中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信