Revolutionizing Healthcare Systems: Synergistic Multimodal Ensemble Learning & Knowledge Transfer for Lung Cancer Delineation & Taxonomy

Aishita Sharma, Sunil K. Singh, Sudhakar Kumar, Mehak Preet, Brij B. Gupta, Varsha Arya, Kwok Tai Chui
{"title":"Revolutionizing Healthcare Systems: Synergistic Multimodal Ensemble Learning & Knowledge Transfer for Lung Cancer Delineation & Taxonomy","authors":"Aishita Sharma, Sunil K. Singh, Sudhakar Kumar, Mehak Preet, Brij B. Gupta, Varsha Arya, Kwok Tai Chui","doi":"10.1109/ICCE59016.2024.10444476","DOIUrl":null,"url":null,"abstract":"Lung cancer presents a substantial global public health concern, underscoring the crucial role of early detection in enhancing patient prognosis and well-being. This paper presents a novel deep ensemble model for the detection and classification of lung cancer, addressing the pressing issue of high incidence and mortality rates associated with the disease, utilizing transfer learning (TL) with Convolutional Neural Networks (CNNs) and integrating modern technology in the form of fitness trackers. The ensemble combines CNNs namely VGG16, VGG19, InceptionV3, Xception, and DenseNet201 through weighted voting, achieving a remarkable 97.2% accuracy. This innovation extends beyond image analysis by integrating fitness trackers that continuously monitor health metrics, enhancing patient engagement and proactive health management. The framework’s capacity to transform both the diagnosis and treatment of lung cancer is highlighted by its heightened precision and extensive patient monitoring capabilities, offering the prospect of better outcomes and more efficient healthcare delivery.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"67 9","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer presents a substantial global public health concern, underscoring the crucial role of early detection in enhancing patient prognosis and well-being. This paper presents a novel deep ensemble model for the detection and classification of lung cancer, addressing the pressing issue of high incidence and mortality rates associated with the disease, utilizing transfer learning (TL) with Convolutional Neural Networks (CNNs) and integrating modern technology in the form of fitness trackers. The ensemble combines CNNs namely VGG16, VGG19, InceptionV3, Xception, and DenseNet201 through weighted voting, achieving a remarkable 97.2% accuracy. This innovation extends beyond image analysis by integrating fitness trackers that continuously monitor health metrics, enhancing patient engagement and proactive health management. The framework’s capacity to transform both the diagnosis and treatment of lung cancer is highlighted by its heightened precision and extensive patient monitoring capabilities, offering the prospect of better outcomes and more efficient healthcare delivery.
革新医疗保健系统:多模态集合学习与知识转移在肺癌分界与分类中的协同作用
肺癌是一个重大的全球公共卫生问题,凸显了早期检测在改善患者预后和福祉方面的关键作用。本文利用卷积神经网络(CNN)的迁移学习(TL),并结合健身追踪器等现代技术,提出了一种用于肺癌检测和分类的新型深度集合模型,以解决肺癌发病率和死亡率高这一紧迫问题。通过加权投票,该组合将 VGG16、VGG19、InceptionV3、Xception 和 DenseNet201 等 CNN 结合在一起,取得了 97.2% 的显著准确率。这一创新不仅限于图像分析,还整合了可持续监测健康指标的健身追踪器,提高了患者参与度和主动健康管理水平。该框架能够改变肺癌的诊断和治疗,突出表现在其更高的精确度和广泛的患者监测能力,为更好的治疗效果和更高效的医疗服务提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信