{"title":"A Cloud-Oriented Indoor-Outdoor Real-Time Localization IoT Architecture for Industrial Environments","authors":"Laura Belli, Luca Davoli, Gianluigi Ferrari","doi":"10.1109/CCNC51664.2024.10454636","DOIUrl":null,"url":null,"abstract":"Localization services for precise and continuous monitoring of the locations of both humans and vehicles in industrial environments are among the most relevant applications in Industrial Internet of Things (IIoT) contexts, to maximize safety and optimize operational activities. Unfortunately, localization in industrial scenarios is particularly challenging because targets can generally move freely in both indoor and outdoor areas. In this paper, we propose a localization monitoring architecture based on a prototypical wearable IoT device equipped with Ultra-Wide Band (UWB), inertial, and GNSS/RTK technologies for seamless localization in heterogeneous environments. We focus on a Web of Things (WoT) approach, verifying suitability and limitations in a real use case scenario. Our approach shows that the proposed architecture can effectively enhance the safety of workers, detecting potentially dangerous events and triggering alarms (e.g., via smart buzzers or gas concentration warning devices) based on a cloud WoT architecture.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"64 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Localization services for precise and continuous monitoring of the locations of both humans and vehicles in industrial environments are among the most relevant applications in Industrial Internet of Things (IIoT) contexts, to maximize safety and optimize operational activities. Unfortunately, localization in industrial scenarios is particularly challenging because targets can generally move freely in both indoor and outdoor areas. In this paper, we propose a localization monitoring architecture based on a prototypical wearable IoT device equipped with Ultra-Wide Band (UWB), inertial, and GNSS/RTK technologies for seamless localization in heterogeneous environments. We focus on a Web of Things (WoT) approach, verifying suitability and limitations in a real use case scenario. Our approach shows that the proposed architecture can effectively enhance the safety of workers, detecting potentially dangerous events and triggering alarms (e.g., via smart buzzers or gas concentration warning devices) based on a cloud WoT architecture.