Person identification using Wi-Fi CSI focusing on door opening and closing motions based on per-channel similarity estimation

Kazuki Iwase, Hiroaki Morino
{"title":"Person identification using Wi-Fi CSI focusing on door opening and closing motions based on per-channel similarity estimation","authors":"Kazuki Iwase, Hiroaki Morino","doi":"10.1109/ICCE59016.2024.10444203","DOIUrl":null,"url":null,"abstract":"Identification of persons entering a room or building will be beneficial to provide personalized smart home services. Conventional identification scheme based on image analysis involve additional actions to persons for identification and also there could be privacy concerns with unintended persons appearing in images. In this study, we propose a scheme to identify an individual from door opening and closing motions by analyzing Wi-Fi Channel State Information (CSI) time series. The motions to be analyzed appear in our daily lives and the scheme does not pose additional actions to persons. Also, privacy concerns will be negligible when analyzing WiFi signal. The proposed scheme estimates similarity between obtained CSI data of the target person and that in the reference data obtained in advance based on cross correlation and dynamic time warping and adopts voting principle per channel basis. Through evaluation experiments with 10 subjects, the proposed scheme achieves average F value of 0.94.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"65 3","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identification of persons entering a room or building will be beneficial to provide personalized smart home services. Conventional identification scheme based on image analysis involve additional actions to persons for identification and also there could be privacy concerns with unintended persons appearing in images. In this study, we propose a scheme to identify an individual from door opening and closing motions by analyzing Wi-Fi Channel State Information (CSI) time series. The motions to be analyzed appear in our daily lives and the scheme does not pose additional actions to persons. Also, privacy concerns will be negligible when analyzing WiFi signal. The proposed scheme estimates similarity between obtained CSI data of the target person and that in the reference data obtained in advance based on cross correlation and dynamic time warping and adopts voting principle per channel basis. Through evaluation experiments with 10 subjects, the proposed scheme achieves average F value of 0.94.
基于每信道相似性估计,使用 Wi-Fi CSI 进行人员识别,重点关注开门和关门动作
对进入房间或楼宇的人员进行识别有利于提供个性化的智能家居服务。传统的基于图像分析的识别方案需要对人员进行额外的操作才能进行识别,而且图像中出现的非预期人员可能存在隐私问题。在这项研究中,我们提出了一种方案,通过分析 Wi-Fi 信道状态信息(CSI)时间序列,从开门和关门动作中识别个人。要分析的动作出现在我们的日常生活中,该方案不会对个人造成额外的动作。此外,在分析 Wi-Fi 信号时,对隐私的关注也可以忽略不计。所提出的方案基于交叉相关和动态时间扭曲来估算所获得的目标人物 CSI 数据与事先获得的参考数据之间的相似性,并采用按信道投票的原则。通过对 10 名实验对象的评估实验,拟议方案的平均 F 值达到了 0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信