TIM-MARL: Information Sharing for Multi-Agent Reinforcement Learning in Smart Environments

A. Siddiqua, Siming Liu, Razib Iqbal, Fahim Ahmed Irfan, Logan Ross, Brian Zweerink
{"title":"TIM-MARL: Information Sharing for Multi-Agent Reinforcement Learning in Smart Environments","authors":"A. Siddiqua, Siming Liu, Razib Iqbal, Fahim Ahmed Irfan, Logan Ross, Brian Zweerink","doi":"10.1109/CCNC51664.2024.10454813","DOIUrl":null,"url":null,"abstract":"Information sharing among agents to jointly solve problems is challenging for multi-agent reinforcement learning algorithms (MARL) in smart environments. In this paper, we present a novel information sharing approach for MARL, which introduces a Team Information Matrix (TIM) that integrates scenario-independent spatial and environmental information combined with the agent's local observations, augmenting both individual agent's performance and global awareness during the MARL learning. To evaluate this approach, we conducted experiments on three multi-agent scenarios of varying difficulty levels implemented in Unity ML-Agents Toolkit. Experimental results show that the agents utilizing our TIM-Shared variation outperformed those using decentralized MARL and achieved comparable performance to agents employing centralized MARL.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"107 4","pages":"1044-1045"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information sharing among agents to jointly solve problems is challenging for multi-agent reinforcement learning algorithms (MARL) in smart environments. In this paper, we present a novel information sharing approach for MARL, which introduces a Team Information Matrix (TIM) that integrates scenario-independent spatial and environmental information combined with the agent's local observations, augmenting both individual agent's performance and global awareness during the MARL learning. To evaluate this approach, we conducted experiments on three multi-agent scenarios of varying difficulty levels implemented in Unity ML-Agents Toolkit. Experimental results show that the agents utilizing our TIM-Shared variation outperformed those using decentralized MARL and achieved comparable performance to agents employing centralized MARL.
TIM-MARL:智能环境中多代理强化学习的信息共享
对于智能环境中的多代理强化学习算法(MARL)来说,代理之间共享信息以共同解决问题是一项挑战。在本文中,我们为 MARL 提出了一种新颖的信息共享方法,即引入团队信息矩阵 (TIM),将与场景无关的空间和环境信息与代理的本地观察相结合,在 MARL 学习过程中增强单个代理的性能和全局意识。为了评估这种方法,我们在 Unity ML-Agents 工具包中实现的三个不同难度的多代理场景中进行了实验。实验结果表明,使用我们的 TIM 共享变体的代理性能优于使用分散式 MARL 的代理,与使用集中式 MARL 的代理性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信