Classification and Source Location Indication of Jamming Attacks Targeting UAVs via Multi-output Multiclass Machine Learning Modeling

M. Alkhatib, M. McCormick, L. Williams, A. Leon, L. Camerano, K. Al, V. Devabhaktuni, N. Kaabouch, Discriminative Svm, LR Regularization
{"title":"Classification and Source Location Indication of Jamming Attacks Targeting UAVs via Multi-output Multiclass Machine Learning Modeling","authors":"M. Alkhatib, M. McCormick, L. Williams, A. Leon, L. Camerano, K. Al, V. Devabhaktuni, N. Kaabouch, Discriminative Svm, LR Regularization","doi":"10.1109/ICCE59016.2024.10444388","DOIUrl":null,"url":null,"abstract":"This paper introduces machine learning (ML) as a solution for the detection and range localization of jamming attacks targeting the global positioning system (GPS) technology, with applications to unmanned aerial vehicles (UAVs). Different multi-output multiclass ML models are trained with GPS-specific sample datasets obtained from exhaustive feature extraction and data collection routines that followed a set of realistic experimentations of attack scenarios. The resulting models enable the classification of four attack types (i.e., barrage, single-tone, successive-pulse, protocol-aware), the jamming direction, and the distance from the jamming source by yielding a detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces machine learning (ML) as a solution for the detection and range localization of jamming attacks targeting the global positioning system (GPS) technology, with applications to unmanned aerial vehicles (UAVs). Different multi-output multiclass ML models are trained with GPS-specific sample datasets obtained from exhaustive feature extraction and data collection routines that followed a set of realistic experimentations of attack scenarios. The resulting models enable the classification of four attack types (i.e., barrage, single-tone, successive-pulse, protocol-aware), the jamming direction, and the distance from the jamming source by yielding a detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.
通过多输出多类别机器学习建模对以无人机为目标的干扰攻击进行分类和来源位置指示
本文介绍了机器学习(ML)作为针对全球定位系统(GPS)技术的干扰攻击的检测和范围定位解决方案,并将其应用于无人驾驶飞行器(UAV)。不同的多输出多分类 ML 模型是利用 GPS 特定的样本数据集进行训练的,这些样本数据集是通过详尽的特征提取和数据收集程序获得的,这些程序遵循了一组真实的攻击场景实验。由此产生的模型能够对四种攻击类型(即拦截、单音、连续脉冲、协议感知)、干扰方向和干扰源距离进行分类,检测率 (DR)、误检测率 (MDR)、误报率 (FAR) 和 F 分数 (FS) 分别为 98.9%、1.39%、0.28% 和 0.989。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信