Enhancing RF Fingerprinting for Indoor Positioning Systems Using Data Augmentation

Suhardi Azliy Junoh, Shawana Jamil, Jae-Young Pyun
{"title":"Enhancing RF Fingerprinting for Indoor Positioning Systems Using Data Augmentation","authors":"Suhardi Azliy Junoh, Shawana Jamil, Jae-Young Pyun","doi":"10.1109/ICCE59016.2024.10444463","DOIUrl":null,"url":null,"abstract":"Indoor Positioning Systems (IPS) have recently emerged as a crucial technology in the Internet of Things (IoT), with widespread applications in smart cities and homes. Radio frequency-based fingerprinting, enabling location estimation through signal observations, requires manual surveys for constructing location maps. This process involves annotating radio signatures with corresponding locations, rendering it time-consuming and labor-intensive. To address this challenge, our paper proposes a data augmentation method that leverages a conditional generative adversarial network with LSTM and CNN. This approach effectively captures patterns in the training data, generating synthetic data that aligns with the distribution. Experiments in a real scenario demonstrate an average localization error of 1.966 and 1.218 m for Wi-Fi and Bluetooth low energy (BLE), surpassing traditional fingerprinting and comparable to the baseline data augmentation methods.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"20 7","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor Positioning Systems (IPS) have recently emerged as a crucial technology in the Internet of Things (IoT), with widespread applications in smart cities and homes. Radio frequency-based fingerprinting, enabling location estimation through signal observations, requires manual surveys for constructing location maps. This process involves annotating radio signatures with corresponding locations, rendering it time-consuming and labor-intensive. To address this challenge, our paper proposes a data augmentation method that leverages a conditional generative adversarial network with LSTM and CNN. This approach effectively captures patterns in the training data, generating synthetic data that aligns with the distribution. Experiments in a real scenario demonstrate an average localization error of 1.966 and 1.218 m for Wi-Fi and Bluetooth low energy (BLE), surpassing traditional fingerprinting and comparable to the baseline data augmentation methods.
利用数据扩增增强室内定位系统的射频指纹识别功能
室内定位系统(IPS)最近已成为物联网(IoT)的一项重要技术,在智能城市和家庭中得到广泛应用。基于无线电频率的指纹识别技术可通过信号观测进行位置估算,但需要人工调查来构建位置地图。这一过程需要将无线电信号标注为相应的位置,既耗时又耗力。为应对这一挑战,我们的论文提出了一种数据增强方法,该方法利用了带有 LSTM 和 CNN 的条件生成对抗网络。这种方法能有效捕捉训练数据中的模式,生成与分布一致的合成数据。在真实场景中进行的实验表明,Wi-Fi 和蓝牙低能耗 (BLE) 的平均定位误差分别为 1.966 米和 1.218 米,超过了传统的指纹识别方法,与基线数据增强方法不相上下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信