{"title":"Nanotechnology and Its Impact on Physical Sciences","authors":"Monica Madjozi","doi":"10.47941/jps.1630","DOIUrl":null,"url":null,"abstract":"Purpose: The main objective of this study was to explore nanotechnology and its impact on physical sciences. \nMethodology: The study adopted a desktop research methodology. Desk research refers to secondary data or that which can be collected without fieldwork. Desk research is basically involved in collecting data from existing resources hence it is often considered a low cost technique as compared to field research, as the main cost is involved in executive’s time, telephone charges and directories. Thus, the study relied on already published studies, reports and statistics. This secondary data was easily accessed through the online journals and library. \nFindings: The findings revealed that there exists a contextual and methodological gap relating to nanotechnology and its impact on physical sciences. Preliminary empirical review revealed that nanotechnology has significantly transformed physical sciences, particularly in physics, chemistry, materials science, and condensed matter physics. It has facilitated the development of novel materials and devices, enabling advancements in quantum technologies and nanoelectronics. Interdisciplinary collaboration is key, emphasizing the need for researchers from diverse scientific backgrounds to work together to harness nanotechnology's full potential. Additionally, the study underscores the importance of ongoing research to address ethical, safety, and environmental concerns associated with nanotechnology, ensuring its sustainable integration into physical sciences. \nUnique Contribution to Theory, Practice and Policy: The Quantum Confinement Theory, Materials Science and Nanomaterials Theory and the Interdisciplinary Collaboration Theory may be used to anchor future studies on nanotechnology. The recommendations stemming from the study advocated for fostering interdisciplinary collaboration among researchers, investing in nanoscience education, promoting ethical and responsible research practices, and supporting long-term environmental assessments. These suggestions aim to facilitate the seamless integration of nanotechnology into the physical sciences, ensuring that it leads to innovative breakthroughs while addressing ethical, safety, and environmental considerations.","PeriodicalId":518397,"journal":{"name":"Journal of Physical Sciences","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47941/jps.1630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The main objective of this study was to explore nanotechnology and its impact on physical sciences.
Methodology: The study adopted a desktop research methodology. Desk research refers to secondary data or that which can be collected without fieldwork. Desk research is basically involved in collecting data from existing resources hence it is often considered a low cost technique as compared to field research, as the main cost is involved in executive’s time, telephone charges and directories. Thus, the study relied on already published studies, reports and statistics. This secondary data was easily accessed through the online journals and library.
Findings: The findings revealed that there exists a contextual and methodological gap relating to nanotechnology and its impact on physical sciences. Preliminary empirical review revealed that nanotechnology has significantly transformed physical sciences, particularly in physics, chemistry, materials science, and condensed matter physics. It has facilitated the development of novel materials and devices, enabling advancements in quantum technologies and nanoelectronics. Interdisciplinary collaboration is key, emphasizing the need for researchers from diverse scientific backgrounds to work together to harness nanotechnology's full potential. Additionally, the study underscores the importance of ongoing research to address ethical, safety, and environmental concerns associated with nanotechnology, ensuring its sustainable integration into physical sciences.
Unique Contribution to Theory, Practice and Policy: The Quantum Confinement Theory, Materials Science and Nanomaterials Theory and the Interdisciplinary Collaboration Theory may be used to anchor future studies on nanotechnology. The recommendations stemming from the study advocated for fostering interdisciplinary collaboration among researchers, investing in nanoscience education, promoting ethical and responsible research practices, and supporting long-term environmental assessments. These suggestions aim to facilitate the seamless integration of nanotechnology into the physical sciences, ensuring that it leads to innovative breakthroughs while addressing ethical, safety, and environmental considerations.