TA’KEED the First Generative Fact-Checking System for Arabic Claims

Saud Althabiti, M. Alsalka, Eric Atwell
{"title":"TA’KEED the First Generative Fact-Checking System for Arabic Claims","authors":"Saud Althabiti, M. Alsalka, Eric Atwell","doi":"10.5121/csit.2024.140103","DOIUrl":null,"url":null,"abstract":"This paper introduces Ta’keed, an explainable Arabic automatic fact-checking system. While existing research often focuses on classifying claims as \"True\" or \"False,\" there is a limited exploration of generating explanations for claim credibility, particularly in Arabic. Ta’keed addresses this gap by assessing claim truthfulness based on retrieved snippets, utilizing two main components: information retrieval and LLM-based claim verification. We compiled the ArFactEx, a testing gold-labelled dataset with manually justified references, to evaluate the system. The initial model achieved a promising F1 score of 0.72 in the classification task. Meanwhile, the system's generated explanations are compared with gold-standard explanations syntactically and semantically. The study recommends evaluating using semantic similarities, resulting in an average cosine similarity score of 0.76. Additionally, we explored the impact of varying snippet quantities on claim classification accuracy, revealing a potential correlation, with the model using the top seven hits outperforming others with an F1 score of 0.77","PeriodicalId":518162,"journal":{"name":"Artificial Intelligence and Applications","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2024.140103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces Ta’keed, an explainable Arabic automatic fact-checking system. While existing research often focuses on classifying claims as "True" or "False," there is a limited exploration of generating explanations for claim credibility, particularly in Arabic. Ta’keed addresses this gap by assessing claim truthfulness based on retrieved snippets, utilizing two main components: information retrieval and LLM-based claim verification. We compiled the ArFactEx, a testing gold-labelled dataset with manually justified references, to evaluate the system. The initial model achieved a promising F1 score of 0.72 in the classification task. Meanwhile, the system's generated explanations are compared with gold-standard explanations syntactically and semantically. The study recommends evaluating using semantic similarities, resulting in an average cosine similarity score of 0.76. Additionally, we explored the impact of varying snippet quantities on claim classification accuracy, revealing a potential correlation, with the model using the top seven hits outperforming others with an F1 score of 0.77
TA'KEED 是首个针对阿拉伯语索赔的生成式事实核查系统
本文介绍 Ta'keed,一个可解释的阿拉伯语自动事实检查系统。现有的研究通常侧重于将索赔分为 "真 "或 "假",而对索赔可信度生成解释的探索却很有限,尤其是在阿拉伯语中。Ta'keed 利用两个主要部分:信息检索和基于 LLM 的索赔验证,根据检索到的片段评估索赔的真实性,从而弥补了这一空白。我们编制了 ArFactEx,这是一个带有人工证明参考文献的黄金标签测试数据集,用于评估该系统。初始模型在分类任务中取得了 0.72 的 F1 分数,成绩喜人。同时,该系统生成的解释与黄金标准解释在句法和语义上进行了比较。研究建议使用语义相似性进行评估,结果是平均余弦相似性得分为 0.76。此外,我们还探索了不同片段数量对索赔分类准确性的影响,发现了潜在的相关性,使用前七次点击的模型优于其他模型,F1 得分为 0.77
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信