Prediksi Deteksi Penyakit Kanker Payudara dengan Menggunakan Algoritma Decision Tree

Ayunie Mellina, S. Suhartono, M. A. Yaqin
{"title":"Prediksi Deteksi Penyakit Kanker Payudara dengan Menggunakan Algoritma Decision Tree","authors":"Ayunie Mellina, S. Suhartono, M. A. Yaqin","doi":"10.14421/jiska.2024.9.1.70-78","DOIUrl":null,"url":null,"abstract":"Cancer is a deadly disease that is difficult to cure. Early cancer detection can be done through laboratory tests to identify the cancer type. Breast cancer is a type of cancer with initial symptoms in the form of a lump. Data mining and classification methods, such as decision trees with ID3 and C5.0 algorithms, are used to categorize breast cancer. The dataset used is Breast Cancer Coimbra, which was downloaded from UCI Machine Learning in 2018. ID3 has limitations in handling unstructured data and continuous attributes, while C5.0 is better. Both algorithms produce tree models with different levels of accuracy. This study shows that the C5.0 algorithm has the best classification results with 80% accuracy, 84.2% precision, 80% recall, and 80% F1 score. 80% accuracy shows the system's classification ability, so the C5.0 model can be used to predict breast cancer.","PeriodicalId":518302,"journal":{"name":"JISKA (Jurnal Informatika Sunan Kalijaga)","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA (Jurnal Informatika Sunan Kalijaga)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2024.9.1.70-78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a deadly disease that is difficult to cure. Early cancer detection can be done through laboratory tests to identify the cancer type. Breast cancer is a type of cancer with initial symptoms in the form of a lump. Data mining and classification methods, such as decision trees with ID3 and C5.0 algorithms, are used to categorize breast cancer. The dataset used is Breast Cancer Coimbra, which was downloaded from UCI Machine Learning in 2018. ID3 has limitations in handling unstructured data and continuous attributes, while C5.0 is better. Both algorithms produce tree models with different levels of accuracy. This study shows that the C5.0 algorithm has the best classification results with 80% accuracy, 84.2% precision, 80% recall, and 80% F1 score. 80% accuracy shows the system's classification ability, so the C5.0 model can be used to predict breast cancer.
使用决策树算法进行乳腺癌疾病检测预测
癌症是一种难以治愈的致命疾病。早期癌症检测可通过实验室检测来确定癌症类型。乳腺癌是一种初期症状为肿块的癌症。数据挖掘和分类方法,如采用 ID3 和 C5.0 算法的决策树,用于对乳腺癌进行分类。使用的数据集是 2018 年从 UCI Machine Learning 下载的 Breast Cancer Coimbra。ID3 在处理非结构化数据和连续属性方面有局限性,而 C5.0 则更好。这两种算法生成的树模型具有不同的准确度。本研究显示,C5.0 算法的分类结果最好,准确率为 80%,精确率为 84.2%,召回率为 80%,F1 分数为 80%。80% 的准确率显示了系统的分类能力,因此 C5.0 模型可用于预测乳腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信