Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, Tsung-Wei Huang
{"title":"A Resource-efficient Task Scheduling System using Reinforcement Learning : Invited Paper","authors":"Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, Tsung-Wei Huang","doi":"10.1109/ASP-DAC58780.2024.10473960","DOIUrl":null,"url":null,"abstract":"Computer-aided design (CAD) tools typically incorporate thousands or millions of functional tasks and dependencies to implement various synthesis and analysis algorithms. Efficiently scheduling these tasks in a computing environment that comprises manycore CPUs and GPUs is critically important because it governs the macro-scale performance. However, existing scheduling methods are typically hardcoded within an application that are not adaptive to the change of computing environment. To overcome this challenge, this paper will introduce a novel reinforcement learning-based scheduling algorithm that can learn to adapt the performance optimization to a given runtime (task execution environment) situation. We will present a case study on VLSI timing analysis to demonstrate the effectiveness of our learning-based scheduling algorithm. For instance, our algorithm can achieve the same performance of the baseline while using only 20% of CPU resources.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"14 1","pages":"89-95"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-aided design (CAD) tools typically incorporate thousands or millions of functional tasks and dependencies to implement various synthesis and analysis algorithms. Efficiently scheduling these tasks in a computing environment that comprises manycore CPUs and GPUs is critically important because it governs the macro-scale performance. However, existing scheduling methods are typically hardcoded within an application that are not adaptive to the change of computing environment. To overcome this challenge, this paper will introduce a novel reinforcement learning-based scheduling algorithm that can learn to adapt the performance optimization to a given runtime (task execution environment) situation. We will present a case study on VLSI timing analysis to demonstrate the effectiveness of our learning-based scheduling algorithm. For instance, our algorithm can achieve the same performance of the baseline while using only 20% of CPU resources.