SPIRAL: Signal-Power Integrity Co-Analysis for High-Speed Inter-Chiplet Serial Links Validation

Xiao Dong, Songyu Sun, Yangfan Jiang, Jingtong Hu, Dawei Gao, Cheng Zhuo
{"title":"SPIRAL: Signal-Power Integrity Co-Analysis for High-Speed Inter-Chiplet Serial Links Validation","authors":"Xiao Dong, Songyu Sun, Yangfan Jiang, Jingtong Hu, Dawei Gao, Cheng Zhuo","doi":"10.1109/ASP-DAC58780.2024.10473908","DOIUrl":null,"url":null,"abstract":"Chiplet has recently emerged as a promising solution to achieving further performance improvements by breaking down complex processors into modular components and communicating through high-speed inter-chiplet serial links. However, the ever-growing on-package routing density and data rates of such serial links inevitably lead to more complex and worse signal and power integrity issues than a large monolithic chip. This highly demands efficient analysis and validation tools to support robust design. In this paper, a signal-power integrity co-analysis framework for high-speed inter-chiplet serial links validation named SPIRAL is proposed. The framework first builds equivalent models for the links with a machine learning-based transmitter model and an impulse response based model for the channel and receiver: Then, the signal-power integrity is co-analyzed with a pulse response based method using the equivalent models. Experimental results show that SPIRAL yields eye diagrams with 0.82-1.85% mean relative error, while achieving $18-44 \\times$ speedup compared to a commercial SPICE.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"21 9","pages":"625-630"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chiplet has recently emerged as a promising solution to achieving further performance improvements by breaking down complex processors into modular components and communicating through high-speed inter-chiplet serial links. However, the ever-growing on-package routing density and data rates of such serial links inevitably lead to more complex and worse signal and power integrity issues than a large monolithic chip. This highly demands efficient analysis and validation tools to support robust design. In this paper, a signal-power integrity co-analysis framework for high-speed inter-chiplet serial links validation named SPIRAL is proposed. The framework first builds equivalent models for the links with a machine learning-based transmitter model and an impulse response based model for the channel and receiver: Then, the signal-power integrity is co-analyzed with a pulse response based method using the equivalent models. Experimental results show that SPIRAL yields eye diagrams with 0.82-1.85% mean relative error, while achieving $18-44 \times$ speedup compared to a commercial SPICE.
SPIRAL:用于高速芯片间串行链路验证的信号-电源完整性协同分析
最近,Chiplet 成为一种很有前途的解决方案,它将复杂的处理器分解成模块化组件,并通过高速芯片间串行链路进行通信,从而进一步提高性能。然而,这种串行链路的封装内路由密度和数据速率不断增加,不可避免地会导致比大型单片芯片更复杂、更糟糕的信号和电源完整性问题。这就非常需要高效的分析和验证工具来支持稳健的设计。本文提出了一个用于高速芯片间串行链路验证的信号-电源完整性协同分析框架,命名为 SPIRAL。该框架首先利用基于机器学习的发射器模型和基于脉冲响应的信道和接收器模型为链路建立等效模型:然后,使用基于脉冲响应的方法,利用等效模型共同分析信号-功率完整性。实验结果表明,SPIRAL 生成的眼图平均相对误差为 0.82-1.85%,与商用 SPICE 相比,速度提高了 18-44 \times$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信