Improving Stock Price Prediction Accuracy with StacBi LSTM

Mohammad Diqi, Hamzah Hamzah
{"title":"Improving Stock Price Prediction Accuracy with StacBi LSTM","authors":"Mohammad Diqi, Hamzah Hamzah","doi":"10.14421/jiska.2024.9.1.10-26","DOIUrl":null,"url":null,"abstract":"This research aimed to enhance stock price prediction accuracy using the Stacked Bidirectional Long Short-Term Memory (StacBi LSTM) model. The study addressed the challenge of capturing long-term dependencies and temporal patterns inherent in stock price data. The research objectives were to evaluate the model's performance across different input sequence lengths and identify the optimal length for prediction. Leveraging a dataset from the Indonesian Stock Exchange, the model's predictions were evaluated using key metrics such as RMSE, MAE, MAPE, and R2. Results indicated that the StacBi LSTM model excelled in capturing stock price trends and demonstrated strengths over traditional methods. The optimal input sequence length was identified, balancing computational efficiency and prediction accuracy. This research contributes valuable insights into improving stock price prediction techniques and offers practical implications for traders and investors. Future research directions encompass hybrid models and integrating external factors to enhance predictive capabilities further.","PeriodicalId":518302,"journal":{"name":"JISKA (Jurnal Informatika Sunan Kalijaga)","volume":"337 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA (Jurnal Informatika Sunan Kalijaga)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2024.9.1.10-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to enhance stock price prediction accuracy using the Stacked Bidirectional Long Short-Term Memory (StacBi LSTM) model. The study addressed the challenge of capturing long-term dependencies and temporal patterns inherent in stock price data. The research objectives were to evaluate the model's performance across different input sequence lengths and identify the optimal length for prediction. Leveraging a dataset from the Indonesian Stock Exchange, the model's predictions were evaluated using key metrics such as RMSE, MAE, MAPE, and R2. Results indicated that the StacBi LSTM model excelled in capturing stock price trends and demonstrated strengths over traditional methods. The optimal input sequence length was identified, balancing computational efficiency and prediction accuracy. This research contributes valuable insights into improving stock price prediction techniques and offers practical implications for traders and investors. Future research directions encompass hybrid models and integrating external factors to enhance predictive capabilities further.
利用 StacBi LSTM 提高股价预测精度
本研究旨在利用堆叠双向长短期记忆(StacBi LSTM)模型提高股票价格预测的准确性。该研究解决了捕捉股票价格数据中固有的长期依赖性和时间模式这一难题。研究目标是评估该模型在不同输入序列长度下的性能,并确定预测的最佳长度。利用印度尼西亚证券交易所的数据集,使用 RMSE、MAE、MAPE 和 R2 等关键指标对模型的预测进行了评估。结果表明,StacBi LSTM 模型在捕捉股价趋势方面表现出色,并显示出优于传统方法的优势。在计算效率和预测准确性之间找到了最佳输入序列长度。这项研究为改进股票价格预测技术提供了有价值的见解,并为交易者和投资者提供了实际意义。未来的研究方向包括混合模型和整合外部因素,以进一步提高预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信