Post-Layout Parasitic Capacitance Prediction Methodology Using Bayesian Optimization

Gi-Kryang Kim, Jaehyun Park, Seong-Ook Jung
{"title":"Post-Layout Parasitic Capacitance Prediction Methodology Using Bayesian Optimization","authors":"Gi-Kryang Kim, Jaehyun Park, Seong-Ook Jung","doi":"10.1109/ICEIC61013.2024.10457120","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed parasitic capacitance prediction methodology using Bayesian optimization to accelerate the iterative design process. The layout process while circuit design is inevitable since the effect of parasitic RC after layout increases as technology scaled down. However, the layout process consumes many time and human resources. To overcome this problem, we present Bayesian optimization based parasitic capacitance estimation methodology with parasitic capacitance modelling. Our proposed methodology can predict the parasitic capacitance of various inverter and NAND2 with less than 3.1% of error.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"230 5","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed parasitic capacitance prediction methodology using Bayesian optimization to accelerate the iterative design process. The layout process while circuit design is inevitable since the effect of parasitic RC after layout increases as technology scaled down. However, the layout process consumes many time and human resources. To overcome this problem, we present Bayesian optimization based parasitic capacitance estimation methodology with parasitic capacitance modelling. Our proposed methodology can predict the parasitic capacitance of various inverter and NAND2 with less than 3.1% of error.
利用贝叶斯优化的布局后寄生电容预测方法
本文提出了利用贝叶斯优化的寄生电容预测方法,以加速迭代设计过程。由于寄生 RC 在布局后的影响会随着技术规模的缩小而增加,因此电路设计中的布局过程不可避免。然而,布局过程耗费大量时间和人力资源。为了克服这一问题,我们提出了基于贝叶斯优化的寄生电容估算方法和寄生电容建模方法。我们提出的方法可以预测各种逆变器和 NAND2 的寄生电容,误差小于 3.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信