Analysis of Neural Network Algorithm in Comparison to Multiple Linear Regression and Random Forest Algorithm

Pagolu Meghana, Visalakshi Annepu, M. Jweeg, Kalapraveen Bagadi, H. Aljibori, M. N. Mohammed, O. Abdullah, S. Aldulaimi, M. Alfiras
{"title":"Analysis of Neural Network Algorithm in Comparison to Multiple Linear Regression and Random Forest Algorithm","authors":"Pagolu Meghana, Visalakshi Annepu, M. Jweeg, Kalapraveen Bagadi, H. Aljibori, M. N. Mohammed, O. Abdullah, S. Aldulaimi, M. Alfiras","doi":"10.1109/ICETSIS61505.2024.10459496","DOIUrl":null,"url":null,"abstract":"Regression analysis, a stalwart in statistical methodology, offers a robust framework for predicting outcomes based on historical data. It hinges on the premise that by scrutinizing past input data, one can discern the relationships between independent and dependent variables, enabling the forecasting of final results. In the dynamic landscape of Machine Learning, a multitude of regression techniques exists. Nevertheless, many real-world companies grapple with optimizing their return on investment due to the perplexing task of selecting the most apt model for their specific datasets. This research endeavor seeks to bridge this knowledge gap by conducting a comprehensive comparative analysis of three widely used and highly proficient regression algorithms: Multiple Linear Regression (MLR), Random Forest (RF), and Neural Networks (NNs). MLR offers a simple and interpretable linear model, while RF harnesses ensemble learning to handle complex relationships, and NN s employ intricate, nonlinear modeling capabilities. The study subjects two distinct datasets, Crop Yield, and Cardiovascular Disease, to scrutiny. The former addresses agricultural productivity forecasting, while the latter explores healthcare applications. By evaluating these datasets using the three regression models, the research aims to determine the most suitable model for each dataset's unique characteristics, enabling data-driven decision-making and enhancing the efficacy of regression analysis in practical, real-world scenarios.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression analysis, a stalwart in statistical methodology, offers a robust framework for predicting outcomes based on historical data. It hinges on the premise that by scrutinizing past input data, one can discern the relationships between independent and dependent variables, enabling the forecasting of final results. In the dynamic landscape of Machine Learning, a multitude of regression techniques exists. Nevertheless, many real-world companies grapple with optimizing their return on investment due to the perplexing task of selecting the most apt model for their specific datasets. This research endeavor seeks to bridge this knowledge gap by conducting a comprehensive comparative analysis of three widely used and highly proficient regression algorithms: Multiple Linear Regression (MLR), Random Forest (RF), and Neural Networks (NNs). MLR offers a simple and interpretable linear model, while RF harnesses ensemble learning to handle complex relationships, and NN s employ intricate, nonlinear modeling capabilities. The study subjects two distinct datasets, Crop Yield, and Cardiovascular Disease, to scrutiny. The former addresses agricultural productivity forecasting, while the latter explores healthcare applications. By evaluating these datasets using the three regression models, the research aims to determine the most suitable model for each dataset's unique characteristics, enabling data-driven decision-making and enhancing the efficacy of regression analysis in practical, real-world scenarios.
神经网络算法与多重线性回归和随机森林算法的比较分析
回归分析是统计方法中的中坚力量,它为根据历史数据预测结果提供了一个强有力的框架。它的前提是,通过仔细研究过去的输入数据,人们可以发现自变量和因变量之间的关系,从而预测最终结果。在机器学习的动态环境中,存在着大量的回归技术。然而,现实世界中的许多公司都在努力优化投资回报率,因为要为特定数据集选择最合适的模型是一项令人困惑的任务。本研究试图通过对三种广泛使用且高度精通的回归算法进行全面比较分析,来弥补这一知识空白:多元线性回归 (MLR)、随机森林 (RF) 和神经网络 (NN)。多重线性回归提供了一个简单且可解释的线性模型,而 RF 利用集合学习来处理复杂的关系,NNs 则采用了复杂的非线性建模能力。该研究对作物产量和心血管疾病这两个不同的数据集进行了仔细研究。前者涉及农业生产力预测,后者则探讨医疗保健应用。通过使用三种回归模型对这些数据集进行评估,该研究旨在针对每个数据集的独特特征确定最合适的模型,从而实现数据驱动决策,并提高回归分析在实际应用场景中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信