Ensemble Learning Algorithms for Solar Power Prediction in Saudi Arabia: A Data-Driven Approach

Mohammad Kamal Hossain, Md Arifuzzaman, M. Seliaman, Arifur Rahman, Debasish Sarker, Hussain Altammar
{"title":"Ensemble Learning Algorithms for Solar Power Prediction in Saudi Arabia: A Data-Driven Approach","authors":"Mohammad Kamal Hossain, Md Arifuzzaman, M. Seliaman, Arifur Rahman, Debasish Sarker, Hussain Altammar","doi":"10.1109/ICETSIS61505.2024.10459648","DOIUrl":null,"url":null,"abstract":"This paper explores into Saudi Arabia's global leadership in renewable energy, particularly its solar initiatives. The study employs a detailed analysis of input variables, including time, temperature, wind speed, humidity, and air pressure, forming the basis for a predictive model focused on Umax (voltage). Rigorous data analysis establishes the reliability of findings, paving the way for further exploration into the models' inner workings. The paper concludes by highlighting the significance of the research for stakeholders, offering nuanced insights into Umax variations and optimizing solar power generation on a global scale.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":"46 5","pages":"1368-1372"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores into Saudi Arabia's global leadership in renewable energy, particularly its solar initiatives. The study employs a detailed analysis of input variables, including time, temperature, wind speed, humidity, and air pressure, forming the basis for a predictive model focused on Umax (voltage). Rigorous data analysis establishes the reliability of findings, paving the way for further exploration into the models' inner workings. The paper concludes by highlighting the significance of the research for stakeholders, offering nuanced insights into Umax variations and optimizing solar power generation on a global scale.
用于沙特阿拉伯太阳能预测的集合学习算法:数据驱动方法
本文探讨了沙特阿拉伯在全球可再生能源领域的领先地位,特别是其太阳能计划。研究详细分析了输入变量,包括时间、温度、风速、湿度和气压,为以 Umax(电压)为重点的预测模型奠定了基础。严格的数据分析确定了研究结果的可靠性,为进一步探索模型的内部运作铺平了道路。论文最后强调了这项研究对利益相关者的重要意义,提供了对 Umax 变化和优化全球太阳能发电的细微洞察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信