Artificial Neural Network-Based Compact Model for Circuit Simulation of a 4- Transistor Active Pixel Sensor Including Conversion Gain Prediction

Yohan Kim, Soyoung Kim
{"title":"Artificial Neural Network-Based Compact Model for Circuit Simulation of a 4- Transistor Active Pixel Sensor Including Conversion Gain Prediction","authors":"Yohan Kim, Soyoung Kim","doi":"10.1109/ICEIC61013.2024.10457179","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate compact model to simulate a 4-transistor active pixel sensor (APS) circuit to investigate the impacts of transistor output resistances and sensing node capacitances. The compact model includes an artificial neural network-based model for the asymmetric APS transistors and an accurate capacitance model at sensing node using 3D-parasitic extraction and compositional analysis. All models are implemented in Verilog-A, and the transient characteristics for reset, integration, and readout operations of CIS are successfully reproduced in the circuit simulation. The simulation results show how the sensing node fluctuation, conversion gain, output swing, and settling time are correlated to the light intensities, parasitic capacitances of layout, and output resistances of APS transistors. This SPICE-compatible compact model provides new insights into APS circuit design and layout optimization for the state-of-the-art CMOS image sensor technologies.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"13 3-4","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an accurate compact model to simulate a 4-transistor active pixel sensor (APS) circuit to investigate the impacts of transistor output resistances and sensing node capacitances. The compact model includes an artificial neural network-based model for the asymmetric APS transistors and an accurate capacitance model at sensing node using 3D-parasitic extraction and compositional analysis. All models are implemented in Verilog-A, and the transient characteristics for reset, integration, and readout operations of CIS are successfully reproduced in the circuit simulation. The simulation results show how the sensing node fluctuation, conversion gain, output swing, and settling time are correlated to the light intensities, parasitic capacitances of layout, and output resistances of APS transistors. This SPICE-compatible compact model provides new insights into APS circuit design and layout optimization for the state-of-the-art CMOS image sensor technologies.
基于人工神经网络的紧凑型模型,用于 4 晶体管有源像素传感器的电路仿真,包括转换增益预测
本文提出了一种精确的紧凑型模型,用于模拟 4 晶体管有源像素传感器(APS)电路,以研究晶体管输出电阻和传感节点电容的影响。该紧凑型模型包括一个基于人工神经网络的非对称 APS 晶体管模型,以及一个使用三维寄生提取和成分分析的精确传感节点电容模型。所有模型均在 Verilog-A 中实现,并在电路仿真中成功再现了 CIS 的复位、积分和读出操作的瞬态特性。仿真结果显示了传感节点波动、转换增益、输出摆幅和沉淀时间如何与光强度、布局的寄生电容和 APS 晶体管的输出电阻相关联。这个与 SPICE 兼容的紧凑型模型为最先进的 CMOS 图像传感器技术的 APS 电路设计和布局优化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信