Enhancing Defense Surveillance: Few-Shot Object Detection with Synthetically Generated Military Data

Chanyeong Park, Seongjun Lee, Hankyul Choi, Donghyun Kim, Yunyoung Jeong, Joonki Paik
{"title":"Enhancing Defense Surveillance: Few-Shot Object Detection with Synthetically Generated Military Data","authors":"Chanyeong Park, Seongjun Lee, Hankyul Choi, Donghyun Kim, Yunyoung Jeong, Joonki Paik","doi":"10.1109/ICEIC61013.2024.10457124","DOIUrl":null,"url":null,"abstract":"Acquiring military-related data to train object detection algorithms for defense surveillance can be highly challenging due to security restrictions. To overcome this challenge, we utilize a few-shot object detection approach that can identify objects using a limited number of examples, deviating from the standard object detection methods that typically require large datasets for training. To compensate for the limited availability of military data, we employ generative models to create synthetic military datasets. This artificially generated data is then used as a support set to train the few-shot object detection network. We assess our method using a self-created dataset that includes four categories: soldiers, tanks, helicopters, and fighter planes.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"142 5","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring military-related data to train object detection algorithms for defense surveillance can be highly challenging due to security restrictions. To overcome this challenge, we utilize a few-shot object detection approach that can identify objects using a limited number of examples, deviating from the standard object detection methods that typically require large datasets for training. To compensate for the limited availability of military data, we employ generative models to create synthetic military datasets. This artificially generated data is then used as a support set to train the few-shot object detection network. We assess our method using a self-created dataset that includes four categories: soldiers, tanks, helicopters, and fighter planes.
加强国防监视:利用合成生成的军事数据进行小目标检测
由于安全限制,获取军事相关数据来训练用于国防监控的物体检测算法极具挑战性。为了克服这一挑战,我们采用了一种几发物体检测方法,这种方法可以使用有限的示例识别物体,与通常需要大量数据集进行训练的标准物体检测方法不同。为了弥补军事数据的有限性,我们采用生成模型来创建合成军事数据集。然后,将这些人工生成的数据作为支持集来训练少镜头物体检测网络。我们使用自创的数据集对我们的方法进行了评估,该数据集包括四个类别:士兵、坦克、直升机和战斗机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信