Empowering Agriculture: Microgrid Optimization with Dynamic Evolutionary Swarm Algorithm for Sustainable Smart Farm in Coastal Morocco

Raja Mouachi, Mohammed Ali Jallal, Hassnae Remmach, Mustapha Raoufi, F. Gharnati
{"title":"Empowering Agriculture: Microgrid Optimization with Dynamic Evolutionary Swarm Algorithm for Sustainable Smart Farm in Coastal Morocco","authors":"Raja Mouachi, Mohammed Ali Jallal, Hassnae Remmach, Mustapha Raoufi, F. Gharnati","doi":"10.1109/ICETSIS61505.2024.10459614","DOIUrl":null,"url":null,"abstract":"This research presents a rigorous and intelligent techno-economic analysis of smart farm systems in the context of Morocco, employing a sophisticated hybrid metaheuristic framework. The primary objective is the meticulous evaluation of a hybrid microgrid system, intricately optimizing its dimensions and financial outlay to efficaciously energize a smart farm situated in the region. The comprehensive scope of this study encompasses the inception, optimization, and scrutiny of the smart farm system through the utilization of MATLAB, a versatile computational tool. Introducing an avant-garde metaheuristic optimization paradigm known as the Hybrid Metaheuristic, the study endeavors to discern the optimum system configuration, with a particular emphasis on ensuring unwavering electricity provision while factoring in the nuances of the levelized electricity cost (LEC). The proposed methodology establishes its mettle through empirical evidence, showcasing precision and reliability in simulation results, thereby substantiating its potential as a stalwart approach for the development of sustainable and economically sound smart farm solutions.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents a rigorous and intelligent techno-economic analysis of smart farm systems in the context of Morocco, employing a sophisticated hybrid metaheuristic framework. The primary objective is the meticulous evaluation of a hybrid microgrid system, intricately optimizing its dimensions and financial outlay to efficaciously energize a smart farm situated in the region. The comprehensive scope of this study encompasses the inception, optimization, and scrutiny of the smart farm system through the utilization of MATLAB, a versatile computational tool. Introducing an avant-garde metaheuristic optimization paradigm known as the Hybrid Metaheuristic, the study endeavors to discern the optimum system configuration, with a particular emphasis on ensuring unwavering electricity provision while factoring in the nuances of the levelized electricity cost (LEC). The proposed methodology establishes its mettle through empirical evidence, showcasing precision and reliability in simulation results, thereby substantiating its potential as a stalwart approach for the development of sustainable and economically sound smart farm solutions.
赋能农业:利用动态进化蜂群算法优化微电网,促进摩洛哥沿海地区可持续智能农场的发展
本研究采用复杂的混合元启发式框架,对摩洛哥的智能农场系统进行了严谨、智能的技术经济分析。主要目标是对混合微电网系统进行细致评估,对其规模和财务支出进行复杂优化,以便为该地区的智能农场提供有效能源。本研究的综合范围包括通过使用 MATLAB(一种多功能计算工具)对智能农场系统进行启动、优化和审查。该研究引入了一种被称为混合元启发式(Hybrid Metaheuristic)的前卫元启发式优化范式,努力找出最佳系统配置,特别强调在考虑平准化电力成本(LEC)的细微差别的同时,确保电力供应的稳定。所提出的方法通过经验证据证明了其可行性,展示了模拟结果的精确性和可靠性,从而证实了其作为开发可持续且经济合理的智能农场解决方案的有力方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信