Enhanced Visual Object Tracking and Segmentation in Military Environments: Overcoming Camouflage and Deformation Challenges

Injae Lee, Sanga Lee, Jinseop Kim, Hyeonjoon Choi, Sinyoung Park, Joonki Paik
{"title":"Enhanced Visual Object Tracking and Segmentation in Military Environments: Overcoming Camouflage and Deformation Challenges","authors":"Injae Lee, Sanga Lee, Jinseop Kim, Hyeonjoon Choi, Sinyoung Park, Joonki Paik","doi":"10.1109/ICEIC61013.2024.10457247","DOIUrl":null,"url":null,"abstract":"Visual object tracking is a critical component of border surveillance technology, complementing object detection in its importance. Despite significant advancements enhancing tracking performance, challenges such as object drifting and discrimination among similar objects persist. This is particularly problematic in military settings where distinguishing between soldiers with matching attire is arduous. This paper introduces an innovative model capable of executing visual object tracking and segmentation in tandem. The model's update mechanism allows for sustained tracking, adeptly handling significant variances in the initial bounding box. Enhanced tracking of camouflaged soldiers was achieved through the incorporation of specialized learning datasets focused on camouflage patterns. Testing our model on both standard benchmarks and tailored military datasets yielded impressive results, affirming the model's efficacy.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"194 3","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual object tracking is a critical component of border surveillance technology, complementing object detection in its importance. Despite significant advancements enhancing tracking performance, challenges such as object drifting and discrimination among similar objects persist. This is particularly problematic in military settings where distinguishing between soldiers with matching attire is arduous. This paper introduces an innovative model capable of executing visual object tracking and segmentation in tandem. The model's update mechanism allows for sustained tracking, adeptly handling significant variances in the initial bounding box. Enhanced tracking of camouflaged soldiers was achieved through the incorporation of specialized learning datasets focused on camouflage patterns. Testing our model on both standard benchmarks and tailored military datasets yielded impressive results, affirming the model's efficacy.
军事环境中的增强型视觉物体跟踪与分割:克服伪装和变形挑战
视觉物体跟踪是边境监控技术的重要组成部分,其重要性与物体检测相辅相成。尽管在提高跟踪性能方面取得了重大进展,但物体漂移和相似物体之间的区分等难题依然存在。这在军事环境中尤为棘手,因为在这种环境中,区分着装相匹配的士兵非常困难。本文介绍了一种能够同时执行视觉对象跟踪和分割的创新模型。该模型的更新机制可实现持续跟踪,并能巧妙地处理初始边界框中的显著差异。通过整合以伪装模式为重点的专业学习数据集,实现了对伪装士兵的强化跟踪。在标准基准和定制的军事数据集上测试我们的模型,结果令人印象深刻,肯定了模型的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信