Red Chili Classification Using HSV Feature Extraction and Naive Bayes Classifier

Hermawan Syahputra, Josua Nainggolan, Johanes Apriadi Parlinggoman Sirait, Muhammad Fadlan Ikromi, Putri Ameliya Lubis
{"title":"Red Chili Classification Using HSV Feature Extraction and Naive Bayes Classifier","authors":"Hermawan Syahputra, Josua Nainggolan, Johanes Apriadi Parlinggoman Sirait, Muhammad Fadlan Ikromi, Putri Ameliya Lubis","doi":"10.37373/tekno.v11i1.593","DOIUrl":null,"url":null,"abstract":"In the culinary industry, the classification of red chili pepper types is used to identify varieties that differ in terms of flavor, pungency, or other uniqueness. This enables their proper use in various recipes and meals. In the market, the classification of red chili pepper types helps in pricing, variety selection, or quality standards applied. For this reason, the purpose of this research is to classify red chili peppers using HSV Feature Extraction and Naive Bayes Clasifier. The stages carried out include: data collection, preprocessing, feature extraction and classification. Red chilies are grouped into 4 classes, namely large red chilies, cakplak red chilies, curly red chilies and chili red chilies. The red chili data used is 119 training data and 123 testing data. In the preprocessing, the image is converted to grayscale, then converted to binary image with the thresholding method. Furthermore, feature extraction is done with the HSV method. Finally, classification is done with Naive Bayes. The results of the study provide an accuracy value for training data of 92.43% and for testing data obtained an accuracy of 92.69%. This method is suitable for use in classification because it gives good results","PeriodicalId":518434,"journal":{"name":"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika","volume":"59 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37373/tekno.v11i1.593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the culinary industry, the classification of red chili pepper types is used to identify varieties that differ in terms of flavor, pungency, or other uniqueness. This enables their proper use in various recipes and meals. In the market, the classification of red chili pepper types helps in pricing, variety selection, or quality standards applied. For this reason, the purpose of this research is to classify red chili peppers using HSV Feature Extraction and Naive Bayes Clasifier. The stages carried out include: data collection, preprocessing, feature extraction and classification. Red chilies are grouped into 4 classes, namely large red chilies, cakplak red chilies, curly red chilies and chili red chilies. The red chili data used is 119 training data and 123 testing data. In the preprocessing, the image is converted to grayscale, then converted to binary image with the thresholding method. Furthermore, feature extraction is done with the HSV method. Finally, classification is done with Naive Bayes. The results of the study provide an accuracy value for training data of 92.43% and for testing data obtained an accuracy of 92.69%. This method is suitable for use in classification because it gives good results
使用 HSV 特征提取和 Naive Bayes 分类器进行红辣椒分类
在烹饪行业,红辣椒类型的分类用于识别在风味、辛辣程度或其他独特性方面存在差异的品种。这样就能在各种食谱和膳食中正确使用它们。在市场上,红辣椒种类的分类有助于定价、品种选择或质量标准的应用。因此,本研究的目的是使用 HSV 特征提取和 Naive Bayes Clasifier 对红辣椒进行分类。研究的各个阶段包括:数据收集、预处理、特征提取和分类。红辣椒被分为 4 个类别,即大红辣椒、卡布拉克红辣椒、卷曲红辣椒和辣椒红辣椒。使用的红辣椒数据为 119 个训练数据和 123 个测试数据。预处理时,先将图像转换为灰度图像,然后用阈值法转换为二值图像。此外,使用 HSV 方法进行特征提取。最后,采用 Naive Bayes 方法进行分类。研究结果表明,训练数据的准确率为 92.43%,测试数据的准确率为 92.69%。这种方法适合用于分类,因为它能提供良好的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信