Comparison of Controlled Undersampling Methods for Machine Learning

Jiříy Setinský, Martin Žádník
{"title":"Comparison of Controlled Undersampling Methods for Machine Learning","authors":"Jiříy Setinský, Martin Žádník","doi":"10.1109/ACDSA59508.2024.10467755","DOIUrl":null,"url":null,"abstract":"Data reduction is an important preprocessing operation for Machine Learning to learn from large datasets, especially in the case of applications requiring online learning using constrained resources. Our survey focuses on a specific family of data reduction methods - controlled undersampling methods. We observe the behaviour of the methods as they cooperate with several supervised machine-learning techniques over multiple evaluation datasets. Our results show that the random undersampling method offers surprisingly good results compared to more complex methods and is a good fit for online and resource-sensitive machine-learning applications.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"55 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data reduction is an important preprocessing operation for Machine Learning to learn from large datasets, especially in the case of applications requiring online learning using constrained resources. Our survey focuses on a specific family of data reduction methods - controlled undersampling methods. We observe the behaviour of the methods as they cooperate with several supervised machine-learning techniques over multiple evaluation datasets. Our results show that the random undersampling method offers surprisingly good results compared to more complex methods and is a good fit for online and resource-sensitive machine-learning applications.
机器学习的受控欠采样方法比较
数据缩减是机器学习从大型数据集中学习的重要预处理操作,尤其是在需要利用有限资源进行在线学习的应用中。我们的研究重点是数据缩减方法的一个特定系列--受控欠采样方法。我们观察了这些方法在多个评估数据集上与几种监督机器学习技术合作时的表现。我们的研究结果表明,与更复杂的方法相比,随机欠采样方法的结果出人意料地好,非常适合在线和资源敏感型机器学习应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信