Review of measures for improving ML model interpretability: Empowering decision makers with transparent insights

Siniša M. Arsić, Marko M. Mihić, Dejan Petrović, Zorica M. Mitrović, S. Kostić, O. Mihic
{"title":"Review of measures for improving ML model interpretability: Empowering decision makers with transparent insights","authors":"Siniša M. Arsić, Marko M. Mihić, Dejan Petrović, Zorica M. Mitrović, S. Kostić, O. Mihic","doi":"10.1109/ACDSA59508.2024.10467907","DOIUrl":null,"url":null,"abstract":"This paper investigates actionable measures to enhance the interpretability of machine learning models, addressing the critical need for transparency in decision-making processes. By proposing and briefly comparing specific measures, this paper aims to empower common knowledge with clearer insights into model predictions, fostering trust and understanding. Theoretical findings and overall discussion encompass techniques for model explanation, feature importance, and interpretability tools, offering a comprehensive guide for practitioners seeking to clarify the black box nature of machine learning outputs. Findings suggest three methods for improving model interpretability. The outlined approaches prioritize real-world applicability, enabling managers to make informed decisions with confidence.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"798 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates actionable measures to enhance the interpretability of machine learning models, addressing the critical need for transparency in decision-making processes. By proposing and briefly comparing specific measures, this paper aims to empower common knowledge with clearer insights into model predictions, fostering trust and understanding. Theoretical findings and overall discussion encompass techniques for model explanation, feature importance, and interpretability tools, offering a comprehensive guide for practitioners seeking to clarify the black box nature of machine learning outputs. Findings suggest three methods for improving model interpretability. The outlined approaches prioritize real-world applicability, enabling managers to make informed decisions with confidence.
回顾提高 ML 模型可解释性的措施:以透明的见解增强决策者的能力
本文研究了提高机器学习模型可解释性的可行措施,以满足决策过程对透明度的迫切需求。通过提出并简要比较具体措施,本文旨在通过更清晰地洞察模型预测来增强常识,从而促进信任和理解。理论发现和总体讨论涵盖了模型解释、特征重要性和可解释性工具等技术,为从业人员澄清机器学习输出的黑箱性质提供了全面指导。研究结果提出了三种提高模型可解释性的方法。概述的方法优先考虑现实世界的适用性,使管理者能够满怀信心地做出明智决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信