Stochastic Energy Management Framework for Multi-Microgrid with Demand Response and Battery Storage

Nehmedo Alamir, Salah Kamel, Francisco Jurado, Sobhy M. Abdelkader
{"title":"Stochastic Energy Management Framework for Multi-Microgrid with Demand Response and Battery Storage","authors":"Nehmedo Alamir, Salah Kamel, Francisco Jurado, Sobhy M. Abdelkader","doi":"10.1109/ACDSA59508.2024.10467676","DOIUrl":null,"url":null,"abstract":"this paper proposes a techno-economic assessment of the integration of the Demand Response Program (DRP) and Battery Energy storage system (BESS) in Multi-Microgrid (MMG) energy management (EM). Additionally, to consider the uncertainties in MMG resources, the Point estimation method (PEM) with Quantum Artificial Rabbits Optimization (QARO) technique is developed to estimate the probability density function (PDF) of operating cost and Independence Performance Index (IPI). A day-ahead EM problem is modeled for operating and transaction cost minimization while the MMG benefit is maximized. The Proposed QARO is employed to solve the deterministic problem in three case studies. The operating cost is reduced with the integration of DR and the BESS. The integration of DR and BESS enhanced the IPI by 2.4%. In addition, the proposed hybrid QARO-PEM is implemented to solve the stochastic EM problem, and the PDF for operating cost and IPI are estimated.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"728 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

this paper proposes a techno-economic assessment of the integration of the Demand Response Program (DRP) and Battery Energy storage system (BESS) in Multi-Microgrid (MMG) energy management (EM). Additionally, to consider the uncertainties in MMG resources, the Point estimation method (PEM) with Quantum Artificial Rabbits Optimization (QARO) technique is developed to estimate the probability density function (PDF) of operating cost and Independence Performance Index (IPI). A day-ahead EM problem is modeled for operating and transaction cost minimization while the MMG benefit is maximized. The Proposed QARO is employed to solve the deterministic problem in three case studies. The operating cost is reduced with the integration of DR and the BESS. The integration of DR and BESS enhanced the IPI by 2.4%. In addition, the proposed hybrid QARO-PEM is implemented to solve the stochastic EM problem, and the PDF for operating cost and IPI are estimated.
带需求响应和电池储能的多微网随机能源管理框架
本文对多微网(MMG)能源管理(EM)中需求响应计划(DRP)和电池储能系统(BESS)的整合进行了技术经济评估。此外,考虑到多微网(MMG)资源的不确定性,还开发了采用量子人工兔子优化(QARO)技术的点估算法(PEM),以估算运营成本和独立性能指数(IPI)的概率密度函数(PDF)。建立了一个日前电磁问题模型,以实现运营和交易成本最小化,而 MMG 效益最大化。在三个案例研究中,采用拟议 QARO 解决确定性问题。通过整合 DR 和 BESS,降低了运营成本。DR 和 BESS 的集成使 IPI 提高了 2.4%。此外,提出的混合 QARO-PEM 被用于解决随机 EM 问题,并估算了运营成本和 IPI 的 PDF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信