Indefinite mixed H₂/H∞ control of linear stochastic systems

Bujar Gashi, Haochen Hua
{"title":"Indefinite mixed H₂/H∞ control of linear stochastic systems","authors":"Bujar Gashi, Haochen Hua","doi":"10.1109/ANZCC59813.2024.10432835","DOIUrl":null,"url":null,"abstract":"We introduce an indefinite generalisation to the finite-horizon mixed $\\mathrm{H}_{2} / \\mathrm{H}_{\\infty}$ control method for linear stochastic systems with additive and multiplicative noise. This permits for the consideration of linear systems without feed-through input to output paths, and optimality criteria with indefinite weights. We prove that in this case there exist a parameterised family of Nash equilibria of an affine state-feedback form, and derive explicit formulas for such equilibria in terms of certain coupled Riccati and linear differential equations with equality and inequality algebraic constraints.","PeriodicalId":518506,"journal":{"name":"2024 Australian & New Zealand Control Conference (ANZCC)","volume":"422 ","pages":"265-270"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC59813.2024.10432835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an indefinite generalisation to the finite-horizon mixed $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ control method for linear stochastic systems with additive and multiplicative noise. This permits for the consideration of linear systems without feed-through input to output paths, and optimality criteria with indefinite weights. We prove that in this case there exist a parameterised family of Nash equilibria of an affine state-feedback form, and derive explicit formulas for such equilibria in terms of certain coupled Riccati and linear differential equations with equality and inequality algebraic constraints.
线性随机系统的无限混合 H₂/H∞ 控制
我们介绍了有限视距混合$\mathrm{H}_{2}/\mathrm{H}_{infty}$控制方法的无限泛化。/ \mathrm{H}_{\infty}$控制方法,用于具有加法和乘法噪声的线性随机系统。这种方法允许考虑没有馈通输入到输出路径的线性系统,以及具有不确定权重的最优标准。我们证明,在这种情况下,存在仿射状态反馈形式的纳什均衡的参数化系列,并根据某些带有相等和不相等代数约束的耦合里卡提方程和线性微分方程,推导出这种均衡的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信