ОРГАНІЗАЦІЯ МОДЕЛІ ЛОГІСТИЧНОЇ МЕРЕЖІ З ВИКОРИСТАННЯМ ПРОГРАМНИХ ТА НЕЙРОМЕРЕЖЕВИХ АЛГОРИТМІВ

А. П. Томашко
{"title":"ОРГАНІЗАЦІЯ МОДЕЛІ ЛОГІСТИЧНОЇ МЕРЕЖІ З ВИКОРИСТАННЯМ ПРОГРАМНИХ ТА НЕЙРОМЕРЕЖЕВИХ АЛГОРИТМІВ","authors":"А. П. Томашко","doi":"10.36910/775.24153966.2023.76.22","DOIUrl":null,"url":null,"abstract":"У роботі досліджено принципи організації моделі логістичної мережі з використанням програмних та нейромережевих алгоритмів. Розкрито структуру сучасної логістичної мережі до складу якої віднесено: ланцюг постачання, ланцюг збуту та зберігання. Підкреслено, що сторона ланцюга постачання має найповнішу інформацію про аналіз продукту, а також охоплює послідовність оновлень складу. Наголошується, що ефективність управління інформацією логістичної мережі визначає оновлення продукту на кінці ланцюга постачання, і тільки за допомогою повної інформації про продукт кінцевого ланцюга постачання можна ефективно контролювати ефективність логістики у сфері функціонування. Зазначено, що впровадження технології інтелектуальної мережі дозволяє реалізувати інтелектуальне управління логістикою, а поступове створення вузлів Інтернету речей інтегрує логістичні ресурси, що дозволяє здійснювати процес оптимізації системи управління в інформаційній системі, вирішуючи проблему планування шляху, обороту матеріалів для зберігання, відповідності інформації про продукт і клієнта та недиференційованого розподілу близькості, може вийти на новий рівень. Запропоновано схему графової згорткової нейронної мережі з детальним описом механізму функціонування. У якості модифікації запропоновано використання тензора та наведено детальну структуру мережі з тензором. Наголошено на схемі розрідженої структури загорткового шару з описом функціональної складової. Доведено, що запропонована структура відрізняється від попередньої підвищеним рівнем ефективності за рахунок того, що логістичні дані в реальному часі кожного логістичного вузла збираються, і логістичні дані попередньо обробляються, щоб усунути нестандартні дані в процесі аналізу. У свою чергу, різниця логістичних даних у різних часових вузлах збільшується, і відбувається розділення логістичних даних на піковий період і гладкий період відповідно до рівня часу, але набір логістичних даних на різних двох етапах підкоряється випадковому розподілу.","PeriodicalId":518020,"journal":{"name":"<h1 style=\"font-size: 40px;margin-top: 0;\">Наукові нотатки</h1>","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"<h1 style=\"font-size: 40px;margin-top: 0;\">Наукові нотатки</h1>","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36910/775.24153966.2023.76.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

У роботі досліджено принципи організації моделі логістичної мережі з використанням програмних та нейромережевих алгоритмів. Розкрито структуру сучасної логістичної мережі до складу якої віднесено: ланцюг постачання, ланцюг збуту та зберігання. Підкреслено, що сторона ланцюга постачання має найповнішу інформацію про аналіз продукту, а також охоплює послідовність оновлень складу. Наголошується, що ефективність управління інформацією логістичної мережі визначає оновлення продукту на кінці ланцюга постачання, і тільки за допомогою повної інформації про продукт кінцевого ланцюга постачання можна ефективно контролювати ефективність логістики у сфері функціонування. Зазначено, що впровадження технології інтелектуальної мережі дозволяє реалізувати інтелектуальне управління логістикою, а поступове створення вузлів Інтернету речей інтегрує логістичні ресурси, що дозволяє здійснювати процес оптимізації системи управління в інформаційній системі, вирішуючи проблему планування шляху, обороту матеріалів для зберігання, відповідності інформації про продукт і клієнта та недиференційованого розподілу близькості, може вийти на новий рівень. Запропоновано схему графової згорткової нейронної мережі з детальним описом механізму функціонування. У якості модифікації запропоновано використання тензора та наведено детальну структуру мережі з тензором. Наголошено на схемі розрідженої структури загорткового шару з описом функціональної складової. Доведено, що запропонована структура відрізняється від попередньої підвищеним рівнем ефективності за рахунок того, що логістичні дані в реальному часі кожного логістичного вузла збираються, і логістичні дані попередньо обробляються, щоб усунути нестандартні дані в процесі аналізу. У свою чергу, різниця логістичних даних у різних часових вузлах збільшується, і відбувається розділення логістичних даних на піковий період і гладкий період відповідно до рівня часу, але набір логістичних даних на різних двох етапах підкоряється випадковому розподілу.
利用软件和神经网络算法组织物流网络模型
本文研究了利用软件和神经网络算法组织物流网络模型的原理。现代物流网络的结构包括:供应链、销售链和仓储。论文强调,供应链方面拥有最完整的产品分析信息,还包括仓库更新顺序。强调物流网络的信息管理效率决定了供应链末端的产品更新,只有借助最终供应链的完整产品信息,才能有效控制作业现场的物流效率。据悉,智能电网技术的引入可以实现智能化物流管理,物联网节点的逐步建立整合了物流资源,使得信息系统中的管理系统优化过程,解决路径规划、物料周转存储、产品与客户信息匹配、无差别就近配送等问题,可以达到一个新的高度。本文提出了一种图卷积神经网络方案,并详细描述了其运行机制。作为修改,提出了使用张量的方案,并给出了使用张量的网络的详细结构。强调了卷积层的稀疏结构方案以及对功能部分的描述。事实证明,由于收集了每个物流节点的实时物流数据,并且在分析过程中对物流数据进行了预处理以消除非标准数据,因此所提出的结构与之前的结构不同,其效率水平得到了提高。反过来,不同时间节点的物流数据差异增大,物流数据按时间层次分为高峰期和平稳期,但不同两个阶段的物流数据集遵循随机分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信