Optimizing Pig Iron Desulfurization Using Physics-Informed Neural Networks (PINNs)

MM 2023 Pub Date : 2024-02-21 DOI:10.3390/engproc2024064003
Andrii Pylypenko, P. Demeter, B. Buľko, Slavomír Hubatka, Lukáš Fogaraš, Jaroslav Legemza, J. Demeter
{"title":"Optimizing Pig Iron Desulfurization Using Physics-Informed Neural Networks (PINNs)","authors":"Andrii Pylypenko, P. Demeter, B. Buľko, Slavomír Hubatka, Lukáš Fogaraš, Jaroslav Legemza, J. Demeter","doi":"10.3390/engproc2024064003","DOIUrl":null,"url":null,"abstract":": The aim of the presented research was to optimize a pig iron desulfurization process through data-driven machine learning methods. Utilizing historical data, chemical analysis of pig iron and slag, and the thermodynamics of the process including simulations of the chemical reactions between individual phases, a neural network was trained for the predictive modeling of desulfurization efficiency. The accuracy of the model was enhanced by integrating Physics-Informed Neural Networks (PINNs), which incorporate chemical reaction principles. The results show better performance of PINNs in comparison to the Feedforward Neural Network (FNN) in the generalization of the desulfurization process, bringing better reliability to the model.","PeriodicalId":518766,"journal":{"name":"MM 2023","volume":"23 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MM 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2024064003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The aim of the presented research was to optimize a pig iron desulfurization process through data-driven machine learning methods. Utilizing historical data, chemical analysis of pig iron and slag, and the thermodynamics of the process including simulations of the chemical reactions between individual phases, a neural network was trained for the predictive modeling of desulfurization efficiency. The accuracy of the model was enhanced by integrating Physics-Informed Neural Networks (PINNs), which incorporate chemical reaction principles. The results show better performance of PINNs in comparison to the Feedforward Neural Network (FNN) in the generalization of the desulfurization process, bringing better reliability to the model.
利用物理信息神经网络 (PINN) 优化生铁脱硫过程
:本研究旨在通过数据驱动的机器学习方法优化生铁脱硫工艺。利用历史数据、生铁和炉渣的化学分析以及工艺的热力学(包括各相之间化学反应的模拟),训练了一个神经网络,用于脱硫效率的预测建模。通过整合包含化学反应原理的物理信息神经网络 (PINN),提高了模型的准确性。结果表明,与前馈神经网络(FNN)相比,物理信息神经网络在脱硫过程的泛化方面具有更好的性能,为模型带来了更高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信