Methods of Signal to Image Transformation in Photovoltaic Fault Diagnosis in Preparation for Machine Learning Applications

Rolando Pula, Lorena Ilagan, Marcelo Santos
{"title":"Methods of Signal to Image Transformation in Photovoltaic Fault Diagnosis in Preparation for Machine Learning Applications","authors":"Rolando Pula, Lorena Ilagan, Marcelo Santos","doi":"10.1109/RESTCON60981.2024.10463558","DOIUrl":null,"url":null,"abstract":"This study explores various techniques for transforming 1-dimensional time-series data into 2-dimensional images, preparing for the application of machine learning models designed for 2D data. Eight distinct methods are introduced, including recurrence plots, Markov transition, Gramian angular field, spectrogram, heatmap, direct plot, phase space transformation, and Poincaré plots. These methods are tested using data from a modeled photovoltaic (PV) grid-connected system, specifically simulating a shorted string fault and a no-fault condition. The fault and no-fault responses are captured with a fixed window size of 256 sample points, consistently applied across all methods. All transformation method is tested through python 3 programming using a laptop with minimal computing capability. The generated image of each transformation may contain 1-channel image in grayscale or 3-channel RGB image. Dimension of the generated image can be increase or decrease during saving process. Each method produces a unique visual representation of the shorted string fault and a no-fault, demonstrating diverse perspectives in transforming 1D time-series data into 2D images for subsequent machine learning applications.","PeriodicalId":518254,"journal":{"name":"2024 1st International Conference on Robotics, Engineering, Science, and Technology (RESTCON)","volume":"81 11","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 1st International Conference on Robotics, Engineering, Science, and Technology (RESTCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RESTCON60981.2024.10463558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores various techniques for transforming 1-dimensional time-series data into 2-dimensional images, preparing for the application of machine learning models designed for 2D data. Eight distinct methods are introduced, including recurrence plots, Markov transition, Gramian angular field, spectrogram, heatmap, direct plot, phase space transformation, and Poincaré plots. These methods are tested using data from a modeled photovoltaic (PV) grid-connected system, specifically simulating a shorted string fault and a no-fault condition. The fault and no-fault responses are captured with a fixed window size of 256 sample points, consistently applied across all methods. All transformation method is tested through python 3 programming using a laptop with minimal computing capability. The generated image of each transformation may contain 1-channel image in grayscale or 3-channel RGB image. Dimension of the generated image can be increase or decrease during saving process. Each method produces a unique visual representation of the shorted string fault and a no-fault, demonstrating diverse perspectives in transforming 1D time-series data into 2D images for subsequent machine learning applications.
光伏故障诊断中的信号到图像转换方法,为机器学习应用做准备
本研究探讨了将一维时间序列数据转换为二维图像的各种技术,为应用为二维数据设计的机器学习模型做好准备。研究介绍了八种不同的方法,包括递推图、马尔可夫转换、格拉米安角场、频谱图、热图、直接图、相空间转换和波恩卡雷图。这些方法使用建模光伏并网系统的数据进行了测试,特别是模拟了短路串故障和无故障情况。故障和无故障响应均采用 256 个采样点的固定窗口大小来捕获,所有方法均一致适用。所有变换方法都是通过使用计算能力最低的笔记本电脑进行 python 3 编程测试的。每种变换生成的图像可能包含 1 通道灰度图像或 3 通道 RGB 图像。在保存过程中,生成图像的尺寸可以增大或减小。每种方法都能生成独特的短路字符串故障和无故障的可视化表示,展示了将一维时间序列数据转换为二维图像供后续机器学习应用的不同视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信