Dena Kadhim Muhsen, Firas Abdulrazzaq Raheem, Ahmed T. Sadiq
{"title":"Improved rapidly exploring random tree using salp swarm algorithm","authors":"Dena Kadhim Muhsen, Firas Abdulrazzaq Raheem, Ahmed T. Sadiq","doi":"10.1515/jisys-2023-0219","DOIUrl":null,"url":null,"abstract":"\n Due to the limitations of the initial rapidly exploring random tree (RRT) algorithm, robotics faces challenges in path planning. This study proposes the integration of the metaheuristic salp swarm algorithm (SSA) to enhance the RRT algorithm, resulting in a new algorithm termed IRRT-SSA. The IRRT-SSA addresses issues inherent in the original RRT, enhancing efficiency and path-finding capabilities. A detailed explanation of IRRT-SSA is provided, emphasizing its distinctions from the core RRT. Comprehensive insights into parameterization and algorithmic processes contribute to a thorough understanding of its implementation. Comparative analysis demonstrates the superior performance of IRRT-SSA over the basic RRT, showing improvements of approximately 49, 54, and 54% in average path length, number of nodes, and number of iterations, respectively. This signifies the enhanced effectiveness of the proposed method. Theoretical and practical implications of IRRT-SSA are highlighted, particularly its influence on practical robotic applications, serving as an exemplar of tangible benefits.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limitations of the initial rapidly exploring random tree (RRT) algorithm, robotics faces challenges in path planning. This study proposes the integration of the metaheuristic salp swarm algorithm (SSA) to enhance the RRT algorithm, resulting in a new algorithm termed IRRT-SSA. The IRRT-SSA addresses issues inherent in the original RRT, enhancing efficiency and path-finding capabilities. A detailed explanation of IRRT-SSA is provided, emphasizing its distinctions from the core RRT. Comprehensive insights into parameterization and algorithmic processes contribute to a thorough understanding of its implementation. Comparative analysis demonstrates the superior performance of IRRT-SSA over the basic RRT, showing improvements of approximately 49, 54, and 54% in average path length, number of nodes, and number of iterations, respectively. This signifies the enhanced effectiveness of the proposed method. Theoretical and practical implications of IRRT-SSA are highlighted, particularly its influence on practical robotic applications, serving as an exemplar of tangible benefits.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.