Embedding Theorems for Flexible Varieties

Pub Date : 2024-01-01 DOI:10.1307/mmj/20226268
S. Kaliman
{"title":"Embedding Theorems for Flexible Varieties","authors":"S. Kaliman","doi":"10.1307/mmj/20226268","DOIUrl":null,"url":null,"abstract":". Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X . In particular, we show that if X is isomorphic (as an algebraic variety) to a special linear group and dim X ≥ max(2 dim Z + 1 , dim T Z ) , then Z admits a closed embedding into X .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20226268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X . In particular, we show that if X is isomorphic (as an algebraic variety) to a special linear group and dim X ≥ max(2 dim Z + 1 , dim T Z ) , then Z admits a closed embedding into X .
分享
查看原文
柔性变量的嵌入定理
.让 Z 是一个单独的代数簇,X 是一个光滑的可扩展簇。我们制定了一些标准,根据这些标准,Z 可以封闭地嵌入到 X 中。我们特别指出,如果 X 与一个特殊线性群同构(作为代数簇),且 dim X ≥ max(2 dim Z + 1 , dim T Z ) ,那么 Z 就有一个封闭的嵌入到 X 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信