Symbolic regression based on genetic programming to predict the permeability of pervious concrete

{"title":"Symbolic regression based on genetic programming to predict the permeability of pervious concrete","authors":"","doi":"10.55228/jtst.13(1).36-43","DOIUrl":null,"url":null,"abstract":"In this study, the authors present an approach to construct a simple and easy-to-apply prediction function to predict the permeability of pervious concrete. The data set used in the study includes 267 experimental samples, each sample includes input factors such as sand amount, aggregate size, water-cement ratio, and aggregate-cement ratio, and the output factor is the permeability of concrete. We applied the Operon model, one of the most effective symbolic regression models based on genetic programming, to construct a function to predict the permeability of previous concrete. This function achieves high accuracy when compared to one of the best black-box models, PSO-XGB. The accuracy of both of these methods exceeds 0.9, but the symbolic regression function clearly shows the advantage that the function is expressed explicitly and the application also becomes simpler.","PeriodicalId":512924,"journal":{"name":"Journal of Transportation Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55228/jtst.13(1).36-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the authors present an approach to construct a simple and easy-to-apply prediction function to predict the permeability of pervious concrete. The data set used in the study includes 267 experimental samples, each sample includes input factors such as sand amount, aggregate size, water-cement ratio, and aggregate-cement ratio, and the output factor is the permeability of concrete. We applied the Operon model, one of the most effective symbolic regression models based on genetic programming, to construct a function to predict the permeability of previous concrete. This function achieves high accuracy when compared to one of the best black-box models, PSO-XGB. The accuracy of both of these methods exceeds 0.9, but the symbolic regression function clearly shows the advantage that the function is expressed explicitly and the application also becomes simpler.
基于遗传编程的符号回归预测透水混凝土的渗透性
在本研究中,作者提出了一种构建简单易用预测函数的方法,用于预测透水混凝土的渗透性。研究中使用的数据集包括 267 个实验样本,每个样本包括砂量、骨料粒度、水灰比和骨料水泥比等输入因子,输出因子是混凝土的渗透性。我们应用 Operon 模型--基于遗传编程的最有效的符号回归模型之一,构建了一个预测先前混凝土渗透性的函数。与最好的黑盒模型之一 PSO-XGB 相比,该函数达到了很高的精度。这两种方法的精确度都超过了 0.9,但符号回归函数的优势明显,即函数表达明确,应用也更加简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信