{"title":"Behavior of Steel Sections with Different Geometries Under Impact Load","authors":"Elif Ağcakoca","doi":"10.36937/cebel.2023.1891","DOIUrl":null,"url":null,"abstract":"In this article, experimental and finite element analysis studies were carried out at different impact heights of steel beams with different geometric cross-sections. The behavior of elements with varying cross-sectional properties was examined when subjected to hammer loads dropped from different heights. In the experimental study, boundary conditions were established using a 2000 mm long rectangular cross-section beam element with pin and roller supports. The behavior of the steel beam under impact load was analyzed using Abaqus Explicit three-dimensional finite element models. Subsequently, a validation process ensuring convergence was performed before conducting a parametric study. 6 finite element models were constructed for the parametric study, comprising circular and ellipse-section steel elements with approximately equivalent unit weights. The cross-sectional geometry and hammer height were varied while keeping the boundary conditions consistent with the samples examined. As the height of the hammer drop increased, the displacement value, Von-Mises stress, and PEEQ (plastic equivalent strain) values of the elements also increased. When transitioning the cross-sectional shape of the beam element from a circle to an ellipse at a constant hammer height, it resulted in a decrease in the displacement value, Von-Mises stress, and PEEQ values. The results indicate that the maximum displacement, highest stress, and PEEQ value are observed in the E#2000 scenario. Similarly, the smallest displacement, lowest stress, and PEEQ value are exhibited in the C#1400 case.","PeriodicalId":512316,"journal":{"name":"October 2023","volume":"13 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"October 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36937/cebel.2023.1891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, experimental and finite element analysis studies were carried out at different impact heights of steel beams with different geometric cross-sections. The behavior of elements with varying cross-sectional properties was examined when subjected to hammer loads dropped from different heights. In the experimental study, boundary conditions were established using a 2000 mm long rectangular cross-section beam element with pin and roller supports. The behavior of the steel beam under impact load was analyzed using Abaqus Explicit three-dimensional finite element models. Subsequently, a validation process ensuring convergence was performed before conducting a parametric study. 6 finite element models were constructed for the parametric study, comprising circular and ellipse-section steel elements with approximately equivalent unit weights. The cross-sectional geometry and hammer height were varied while keeping the boundary conditions consistent with the samples examined. As the height of the hammer drop increased, the displacement value, Von-Mises stress, and PEEQ (plastic equivalent strain) values of the elements also increased. When transitioning the cross-sectional shape of the beam element from a circle to an ellipse at a constant hammer height, it resulted in a decrease in the displacement value, Von-Mises stress, and PEEQ values. The results indicate that the maximum displacement, highest stress, and PEEQ value are observed in the E#2000 scenario. Similarly, the smallest displacement, lowest stress, and PEEQ value are exhibited in the C#1400 case.