Common fixed point theorems in connection with two weakly compatible mappings in menger space with bicomplex-valued metric

S. Bhattacharyya, C. Biswas, T. Biswas
{"title":"Common fixed point theorems in connection with two weakly compatible mappings in menger space with bicomplex-valued metric","authors":"S. Bhattacharyya, C. Biswas, T. Biswas","doi":"10.21608/ejmaa.2024.243997.1087","DOIUrl":null,"url":null,"abstract":". It is well-known that the fixed point theory plays a very important role in theory and applications. In 2017, Choi et al. [4] introduced the notion of bicomplex valued metric spaces (bi-CVMS) and established common fixed point results for weakly compatible mappings. On the other hand, in 1942, K. Menger [14] initiated the study of probabilistic metric spaces where he replaced the distance function d ( x,y ) by distribution function Fx,y ( t ), where the value of Fx,y ( t ) is interpreted as the probability that the distance between x and y be less than t , t > 0. In this paper, we have used bicomplex-valued metric on a set. We have taken Fx,y ( t ) as the probability that norm of the distance between x and y be less than t , i.e., || d ( x,y ) || < t , t > 0 and initiated menger space with bicomplex valued metric. We also aim to prove certain common fixed point theorems for a pair of weakly compatible mappings satisfying (CLRg) or (E.A) property in this space.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2024.243997.1087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. It is well-known that the fixed point theory plays a very important role in theory and applications. In 2017, Choi et al. [4] introduced the notion of bicomplex valued metric spaces (bi-CVMS) and established common fixed point results for weakly compatible mappings. On the other hand, in 1942, K. Menger [14] initiated the study of probabilistic metric spaces where he replaced the distance function d ( x,y ) by distribution function Fx,y ( t ), where the value of Fx,y ( t ) is interpreted as the probability that the distance between x and y be less than t , t > 0. In this paper, we have used bicomplex-valued metric on a set. We have taken Fx,y ( t ) as the probability that norm of the distance between x and y be less than t , i.e., || d ( x,y ) || < t , t > 0 and initiated menger space with bicomplex valued metric. We also aim to prove certain common fixed point theorems for a pair of weakly compatible mappings satisfying (CLRg) or (E.A) property in this space.
门格尔空间中与双复值度量的两个弱兼容映射有关的共定点定理
.众所周知,定点理论在理论和应用中起着非常重要的作用。2017 年,Choi 等人[4] 引入了双复值度量空间(bi-CVMS)的概念,并建立了弱兼容映射的常见定点结果。另一方面,1942 年,K. Menger [14] 开始了概率度量空间的研究,他用分布函数 Fx,y ( t ) 代替了距离函数 d ( x,y ) ,其中 Fx,y ( t ) 的值被解释为 x 和 y 之间的距离小于 t , t > 0 的概率。我们把 Fx,y ( t ) 作为 x 和 y 之间距离的规范小于 t 的概率,即 || d ( x,y ) || < t , t > 0,并用双复值度量启动门格尔空间。我们还旨在证明该空间中满足(CLRg)或(E.A)性质的一对弱兼容映射的某些公共定点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信